
Pattern Recognition 169 (2026) 111928 

A
0

 

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr  

Generalizing across non-stationary series via learning dynamic causal factors
Weifeng Zhang a , Yan Liu a, Xovee Xu a , Fan Zhou a,b ,∗, Ting Zhong a , Kunpeng Zhang c
a University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
b Key Laboratory of Intelligent Digital Media Technology of Sichuan Province, Chengdu, 610054, Sichuan, China
c University of Maryland, College Park, 20742, MD, USA

A R T I C L E  I N F O

Keywords:
Domain generalization
Non-stationary time series
Neural networks

 A B S T R A C T

Learning domain-invariant representations is a crucial task for achieving out-of-distribution generalization. Recent 
efforts have begun to incorporate causality into this process, aiming to identify and understand the causal 
factors relevant to various tasks. However, when confronted with non-stationary time series data, simply 
extending existing generalization methods may prove ineffective. This inadequacy stems from their failure 
to adequately model the underlying causal factors, exacerbated by temporal domain shifts in addition to source 
domain shifts. In this paper, we thoroughly examine the challenges posed by both source and temporal shifts 
through a causal lens in the context of generalizing non-stationary time series data. We introduce a novel 
model called the Dynamic Causal Sequential Variational Auto-Encoder (DCSVAE), designed specifically to 
learn dynamic causal factors. By effectively disentangling the representation of non-stationary time series 
data, our model distinguishes between dynamic causal, dynamic non-causal, and static non-causal factors, 
thereby facilitating temporal generalization. To enhance disentanglement, we introduce two constraints on 
latent variables based on mutual information. Theoretical guarantees rooted in information theory validate 
the feasibility of our approach. Our experiments, conducted on both synthetic and real datasets, demonstrate 
the superior performance of the proposed model in time series domain generalization tasks when compared 
to state-of-the-art benchmarks.
1. Introduction

1.1. Motivation

Many machine learning paradigms often fail to generalize well 
when training and test datasets do not comply with the conventional 
i.i.d. assumption [1], which is also known as out-of-distribution (OOD) 
generalization. This is often caused by overreliance on relations among 
features rather than causation [2]. To address this problem, recent 
studies have started paying attention to invariant causal representa-
tion [3,4]. They regard OOD generalization as a task aiming to extract 
invariant representation across domains, which has a great impact on 
various downstream applications in computer vision [5] and natural 
language processing [6]. However, the performance of above methods 
usually drops significantly when it comes to time series data.

The phenomenon of temporal shifts (cf. Section 3) is ubiquitously 
observed given the real world is non-stationary and constantly evolv-
ing. For example, in the clinical context [7], mortality might decrease 
with the improvement of critical care. This is also true in linguistic 
settings [8], where the content and styles of conversations change over 
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time [9,10]. In addition, the source shifts may still be unavoidable 
due to the nature of data. For example, data might be collected from 
multiple heterogeneous sources. Different samples might be measured 
by different devices. These two latent distribution shifts make typical 
generalization methods fail to extract invariants from time series [11,
12]. Thus, seeking new methods to tackle both shifts in a unified model 
is called for.

1.2. Research gaps

Recent works have attempted to understand generalization from the 
perspective of causality [13,14]. Inspired by this, we intend to model 
underlying causal factors in time series data upon which the invariant 
representation can be extracted and adapted to unseen domains. Note 
that non-causal factors always exist that can affect the data genera-
tion process. To explain this, we take the football classification task 
provided by [11] as an example. In this example, each instance is a 
video clip where sportsmen perform actions. The actions vary with 
time, e.g., running, receiving, or kicking (repeatedly) occurs at different 
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time points. This indicates the existence of temporal shifts. The order of 
actions can also be completely different across videos. It is also possible 
that some videos are recorded by one device while others are from 
different devices. This suggests that source domain shifts might occur. 
In order to precisely classify the sport, the model needs to recognize 
factors that affect both the video itself and the outcome (i.e., the 
prediction label). These are what we call dynamic causal factors. In 
addition, there are two kinds of non-causal factors that are only related 
to the data (i.e., videos): the static one, e.g., the costumes of players, 
and the dynamic one, e.g., the changing viewpoints. To sum up, it 
is desirable to disentangle the representation into these three factors 
discussed above in time series tasks.

However, existing domain generalization methods for time series 
fail to explicitly address temporal and source shifts simultaneously. 
Additionally, they often rely on an explicit time index or a sequence 
of labels, which may not always be available. In this paper, we pro-
pose a novel model, namely Dynamic Causal Sequential Variational 
Auto-Encoder (DCSVAE), to tackle the challenge of generalizing non-
stationary time series. Specifically, DCSVAE is a deep generative model 
designed to learn and disentangle three latent factors: dynamic causal, 
dynamic non-causal, and static non-causal components. To promote 
disentanglement, we align the model objective with mutual information 
principles. Furthermore, we provide theoretical guarantees based on 
information theory. Furthermore, we demonstrate that our model can 
generalize better than existing domain generalization methods when 
dealing with non-stationary time series. We validate DCSVAE on both 
synthetic and real data, and the results show that our model outper-
forms the state-of-the-art methods with effective disentanglement. Note 
that our model not only generalizes well on the test domain but also 
on the training domain [15].

1.3. Objectives

Suppose we are given training data 𝑡𝑟 = {(𝐱𝑖1∶𝑇 , 𝐲
𝑖
1∶𝑇 )}

𝑁
𝑖=1, where 

𝐱𝑖1∶𝑇 ∈  ⊂ R𝑇×𝐷 is the 𝑖th non-stationary time series, and 𝐲𝑖 ∈  ⊂

R𝑇×𝐶 is the corresponding labels, where 𝑇  denotes the length, 𝐷 is the 
input dimension for each time point and 𝐶 is the number of classes. 
We denote 𝑃 𝑡𝑟(𝐱, 𝐲) and 𝑃 𝑡𝑒(𝐱, 𝐲) as the distribution of training set and 
test set respectively, and there exists two shifts as discussed before (cf. 
Definitions  1 and 2). Our goal is to train a model ℎ ∶  →  to 
minimize the risk on an unseen but related target domain 𝑡𝑒: 𝑅𝑡𝑒 (ℎ) =
E(𝐱,𝐲)∼𝑃 𝑡𝑒 [𝓁(ℎ(𝐱), 𝐲)], where 𝓁 ∶  ×  → R+ is a loss function.

1.4. Key contributions

The contributions made by this study are summarized as follows:

• To our knowledge, we are among the first to analyze both source 
and temporal shifts in a causal view for non-stationary time series 
generalization tasks.

• We propose DCSVAE, a novel framework designed to effectively 
disentangle the representation of non-stationary time series data 
into dynamic causal, dynamic non-causal, and static non-causal 
factors, enabling improved temporal generalization. To the best 
of our knowledge, this is the first work in the field of time series 
domain generalization.

• To encourage the disentanglement, we construct a new objective 
combining evidence lower bound (ELBO) with constraints based 
on mutual information. More interestingly, our proposed model 
can be used as a feature extractor and provide off-the-shelf do-
main generalization methods with the generalization ability for 
non-stationary time series data.

• The performance on both synthetic and real datasets along with 
two model selection methods shows the superiority of our model 
and its ability to learn dynamic causal factors effectively.
2 
2. A causal view of non-stationary series generalization

To demonstrate the challenges of non-stationary time series gen-
eralization and justify the necessity of specific settings in this work, 
we take a simple yet illustrative example from the temporal colored 
MNIST (TCMNIST) dataset [12], shown in Fig.  2. It is an extension of 
colored MNIST [16], which converts a static dataset into a time series 
one. The goal is to predict the parity (even or odd) of the sum of the 
current and the last frames under the following two distribution shifts 
One unique characteristic intentionally designed in TCMNIST is the 
spurious correlation between color and label, i.e., the pairs (𝑔𝑟𝑒𝑒𝑛, 𝑜𝑑𝑑)
and (𝑟𝑒𝑑, 𝑒𝑣𝑒𝑛).

To illustrate the generalization problem of nonstationary time series 
better, we define two kinds of distributional shifts separately as below:

Definition 1 (Source Shift). Let 𝑃 𝑎(𝐱1∶𝑇 , 𝐲1∶𝑇 ) and 𝑃 𝑏(𝐱1∶𝑇 , 𝐲1∶𝑇 ) be two 
distributions from two sources 𝑎 and 𝑏 where 𝐱1∶𝑇  is a time series 
and 𝐲1∶𝑇  denotes the corresponding label, if there exists source domain 
shift between 𝑎 and 𝑏, then we have 𝑃 𝑎(𝐱1∶𝑇 , 𝐲1∶𝑇 ) ≠ 𝑃 𝑏(𝐱1∶𝑇 , 𝐲1∶𝑇 ). 

Definition 2 (Temporal Shift). Let 𝐱1∶𝑇  and 𝐲1∶𝑇  be a time series and 
corresponding label respectively, if there exists temporal shift within 
the time series, then we have 𝑃 (𝐱𝑖, 𝐲𝑖) ≠ 𝑃 (𝐱𝑗 , 𝐲𝑗 ), ∃𝑖, 𝑗 ∈ [1, 𝑇 ].

Source shift is a common phenomenon when it comes to non-
temporal data such as images. Apparently, it can occur across time 
series. Source shift indicates that the distributions might be different 
across sources while staying the same within each source, although 
we may not know which domain/source the given time series belongs 
to. As shown in the left part of Fig.  2, instances in different rows 
might be collected from different sources. The correlation between 
color and label decreases from 90% at the top to 10% at the bottom. 
This spurious correlation is not a stable factor for label prediction even 
it may perform well when it is high. From a causal perspective, recent 
studies attribute the correlation between input and label to the common 
causes as shown in Fig.  1(a) [3,17], where 𝐳𝑐 denotes the causal factors
that are domain invariant, and 𝐳𝑛 denotes the non-causal factors which 
vary with domains. For the setting of stationary series, the distributions 
of causal factors could change with time while non-causal factors do not 
for the purpose of satisfying the stationary property. Thus, we need 
to explicitly model the dynamic causal factors and static non-causal 
factors as shown in Fig.  1(b). Note that we do not exclude the situation 
where all causal factors are the same within a time series.

Temporal shift is ubiquitous in non-stationary time series, where the 
statistical property and distribution change continuously over time [18] 
as shown in the right part of Fig.  2. Recent works [19,20] notice 
this shift and propose to tackle it for evolving domain transfer. More 
recently, Lu et al. have brought temporal shifts into time series gen-
eralization formulation [21], which is similar to our paper. It is noted 
that methods of modeling temporal shifts are quite different, and they 
just model temporal shifts with discrete sub-domains. We argue that 
the continuous view is more natural, as well as separating sub-domains 
is not trivial.

Given the existence of two domain shifts and efforts made by 
researchers, two questions naturally arise.

Q1: How can we model non-stationary time series for generalization? If 
there only exist source shifts, one could treat it as a general domain 
generalization task, and extract factors that are invariant to domains 
as shown in Fig.  1(a). For adapting to time series, temporal informa-
tion should be considered as shown in Fig.  1(b). When time series is 
not stationary, dynamic non-causal factors can be accounted for the 
temporal shifts. To this end, we propose a novel graphical model for 
modeling non-stationary time series (cf. Fig.  1(d)), aiming to learn the 
dynamic causal factors which account for both two shifts. Specifically, 
𝐳𝑐1∶𝑇 , 𝐳𝑛1∶𝑇  and 𝐳𝑠 denote the dynamic causal, dynamic non-causal, and 
static non-causal factors, respectively, which correspond to the digits 
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Fig. 1. Comparison of causal graphs for different settings: non-temporal, stationary, 
non-stationary time series (baseline and ours). Gray and white nodes denote observed 
and unobserved variables, respectively. (a) is the causal graph for non-temporal data, 
where 𝐳𝑐 , 𝐳𝑛 and 𝐲 are the causal factors, non-causal factors and label(s), respectively. 
(c) is the causal graph for the baseline setting on non-stationary time series. (b) and 
(d) are the causal graphs for stationary and non-stationary time series (ours), where 
𝐳𝑐1∶𝑇 , 𝐳𝑛1∶𝑇 , 𝐳𝑠 and 𝐲 denote the dynamic causal, dynamic non-causal, static non-causal 
factors, and a series of labels, respectively.

shapes, colors, and background colors in Fig.  2. The 𝐳𝑠 accounts for 
source shifts like general DG methods [3,17] without considering time-
varying distribution shifts, and the 𝐳𝑛1∶𝑇  accounts for temporal shifts 
which is similar to recent works [19]. Note that if a given series is sta-
tionary, 𝐳𝑛1∶𝑇  would be the same for every timestamp, thus our proposed 
causal graph will degenerate to Fig.  1(b), showing its compatibility 
to stationary and non-stationary series. In Section 4, we present our 
proposed deep generative network to model the aforementioned three 
factors and optimize it with theoretical guarantees.

Q2: Can we directly use off-the-shelf domain generalization methods for 
non-stationary series? In this paper, we focus on domain generalization 
across non-stationary time series. More precisely, both source shifts 
and temporal shifts occur simultaneously, which is termed as mixed 
shifts in this paper. These two shifts can be roughly regarded as the 
distribution shifts originated from different sources and times. Though 
there are few studies about time series domain generalization, many 
efforts have been taken into domain generalization for source shifts in 
non-temporal data, such as IRM [16] and VREx [22]. These are model-
agnostic and aim to find domain invariant representations, ignoring 
the differences between source and temporal shifts. Thus, they mix up 
the dynamic and static non-causal factors (cf. Fig.  1(c)). According to 
the above discussion, it is inappropriate to tackle non-stationary time 
series generalization with off-the-shelf methods. Therefore, we propose 
a novel generative model aiming to model non-stationary time series 
(cf. Fig.  1(d)).

3. Related work

3.1. Domain generalization and causality

Domain generalization aims to learn a model which can fit the 
data well in an unseen target domain [23,24]. Recent research efforts 
have brought causality into OOD generalization tasks [25]. Guided 
by the invariance principle of causality [2], a stream of literature 
focus on learning causal factors to represent the causality via the 
certain objective function or the generative process. IRM [16] and 
its extension [26] divided the observations into upstream causal and 
downstream non-causal factors with respect to labels, and proposed an 
objective minimizing the differences across environments via carefully 
3 
Fig. 2. An illustration example of source shifts (left) and temporal shifts (right) in non-
stationary time series. The percentage denoting the spurious correlation between the 
color and the label varies with the source and the time, respectively.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

designed penalty terms. Recently, deep generative models have been 
taken into consideration for modeling causal and non-causal factors. 
DIVA [27] proposed a generative model by disentangling latent rep-
resentations conditioned by domains and labels, which learned three 
disentangled latent factors given different source domains. Causal-
HMM [28] combined the causal graph based on expertise and hidden 
Markov model for time series forecasting, showing the generalization 
ability when the distribution of data (e.g., the gender proportion) 
changes.

Though above methods try to model causal factors explicitly, they 
all ignore the non-stationary property which is ubiquitous for time 
series in real world. More recently, temporal generalization has arisen 
attention [29,30]. They both model the temporal shift with time-
sensitive parameters. However, existing work does not consider the 
temporal shift in a causality view. To address the above issues, we 
propose a novel model based on a new causal graph which is reasonable 
and effective for non-stationary time series. Specifically, our proposed 
model aims to learn dynamic causal factors rather than static ones in 
previous work.

3.2. Disentangling time series

Disentangled representation is to learn several independent factors 
in latent space for data modeling, which is similar to human cognition, 
e.g., the Beuchet Chair illusion [31]. To do this, various generative 
models based on VAE and GAN have been proposed and achieved 
significant performance improvement for stationary data. For non-
stationary time series, disentangling time-dependent and time-invariant 
features explicitly was found to be effective in controlled genera-
tion [32] based on sequential generative models. However, Locatello 
et al. [33] pointed out that it is impossible to ensure disentanglement 
without supervision. Therefore, self-supervised and contrastive learning 
are taken into consideration for introducing inductive bias [34,35]. 
More recently, LSSAE [19] leveraged the disentanglement for evolving 
domain generalization. Specifically, it aims to learn two latent factors 
related to inputs and labels which accounts for covariate and concept 
shifts.

Note that our work is similar to LSSAE [19], where we both model 
the dynamic and static factors for time series in the OOD setting. 
However, we explicitly model the dynamic causal factors rather than 
static factors in [19]. Our DCSVAE is also related to Causal-HMM in its 
efforts to learn dynamic causal factors for time series data. Essentially, 
DCSVAE does not need any expertise about the target task, while the 
causal graph in Causal-HMM is carefully designed based on expertise.

4. Dynamic causal sequential variational auto-encoder

4.1. Proposed model

Priors. In our model, there are three latent factors 𝐳𝑐1∶𝑇 , 𝐳𝑛1∶𝑇 , 𝐳𝑠 denot-
ing dynamic causal, dynamic non-causal, and static non-causal factors, 
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respectively. The joint prior distribution can be factorized as 

𝑝𝜽(𝐳𝑐1∶𝑇 , 𝐳
𝑛
1∶𝑇 , 𝐳

𝑠) = 𝑝𝜽(𝐳𝑠)
𝑇
∏

𝑡=1
𝑝𝜽(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡)𝑝𝜽(𝐳

𝑛
𝑡 |𝐳

𝑛
<𝑡). (1)

The priors of dynamic factors are defined as sequential priors 𝑝𝜽(𝐳𝑐𝑡 |𝐳𝑐<𝑡)
=  (𝝁(𝐳𝑐<𝑡),𝝈(𝐳

𝑐
<𝑡)) and 𝑝𝜽(𝐳𝑛𝑡 |𝐳𝑛<𝑡) =  (𝝁(𝐳𝑛<𝑡),𝝈(𝐳

𝑛
<𝑡)), which can be pa-

rameterized by recurrent neural networks such as LSTM and GRU. And 
the prior of static factors is defined as a standard Gaussian distribution 
𝑝𝜽(𝐳𝑠) =  (𝟎, 𝐈).

To model the dynamic causal factors in non-stationary time series, 
we define a probabilistic generative model for the joint distribution 
over observed and latent variables based on the causal graph as shown 
in Fig.  1(d). It can be factorized due to {𝐱1∶𝑇 , 𝐳𝑠, 𝐳𝑛1∶𝑇 } ⟂ 𝐲1∶𝑇 |𝐳𝑐1∶𝑇 : 

𝑝𝜽(𝐱1∶𝑇 , 𝐲1∶𝑇 , 𝐳𝑐1∶𝑇 , 𝐳
𝑛
1∶𝑇 , 𝐳

𝑠) =

𝑝𝜽(𝐲1∶𝑇 |𝐳𝑐1∶𝑇 )
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

prediction

𝑝𝜽(𝐱1∶𝑇 , 𝐳𝑐1∶𝑇 , 𝐳
𝑛
1∶𝑇 , 𝐳

𝑠)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

generation

, (2)

where the first term denotes the predictive process from dynamic causal 
factors 𝐳𝑐1∶𝑇 . The causal factors learning was used by recent domain 
generalization works [3,17]. The second term denotes the generative 
process for time series which can be factorized by Markov chain as: 
𝑝𝜽(𝐱1∶𝑇 , 𝐳𝑐1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑠) =

𝑝𝜽(𝐳𝑠)
𝑇
∏

𝑡=1
𝑝𝜽(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡)𝑝𝜽(𝐳

𝑛
𝑡 |𝐳

𝑛
<𝑡)𝑝𝜽(𝐱𝑡|𝐳

𝑐
𝑡 , 𝐳

𝑛
𝑡 , 𝐳

𝑠),
(3)

where the generation process 𝑝𝜽(𝐱𝑡|⋅) from latent variables can be 
implemented by a flexible function, e.g., a deconvolutional network for 
images or multi-layer perceptrons (MLP) for others.
Inference of dynamic causal factors. Our model exploits variational 
inference to learn an approximate posterior of three latent factors 𝑞𝝓
given observed data. We train it with VAE. The objective function of 
latent factor learning can be optimized by maximizing the logarithm 
likelihood as: 
max
𝜽

E𝑃 𝑡𝑟
[

𝑝𝜽(𝐱1∶𝑇 , 𝐲1∶𝑇 )
]

. (4)

Following the past work towards time series generation [32,34], 
the posterior distribution 𝑞𝝓 over latent variables can be factorized in 
two structures with respect to dynamic and static factors, i.e., full and 
factorized structures, whether inferring dynamic factors through static 
one or not specifically. Regarding our proposed method, we should 
consider not only dynamic and static relations but also causal and 
non-causal relations. The causal and non-causal information would be 
entangled if we adopt the full structure. Moreover, we also employ 
factorized structure when inferring dynamic and static factors for better 
disentanglement [34]. Therefore, we have the factorization of the 
inference model as follows: 
𝑞𝝓(𝐳𝑐1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑠
|𝐱1∶𝑇 ) =

𝑞𝝓(𝐳𝑠|𝐱1∶𝑇 )
𝑇
∏

𝑡=1
𝑞𝝓(𝐳𝑐𝑡 |𝐱<𝑡)𝑞𝝓(𝐳

𝑛
𝑡 |𝐱<𝑡),

(5)

where the 𝑞𝝓(𝐳𝑠|𝐱1∶𝑇 ), 𝑞𝝓(𝐳𝑐𝑡 |𝐱<𝑡) and 𝑞𝝓(𝐳𝑛𝑡 |𝐱<𝑡) are all Gaussian distri-
butions parameterized by sequential models. Specifically, we employ 
the bi-directional LSTM for 𝑞𝝓(𝐳𝑠|𝐱1∶𝑇 ) to model static information of 
the whole input sequence.

Theorem 1.  Combined with above causal graph of non-stationary time 
series as shown in Fig.  1(d), the evidence lower bound of likelihood (cf. 
Eq. (4)) in DCSVAE  is:
𝐸𝐿𝐵𝑂 = E𝑃 𝑡𝑟

[

E
[

log 𝑝𝜽(𝐲1∶𝑇 |𝐳𝑐1∶𝑇 )
]

+ E𝑞𝝓 [log 𝑝𝜽(𝐱1∶𝑇 |𝐳
𝑐
1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑐 )]

− 𝛼 D (𝑞 (𝐳𝑠|𝐱 ) ∥ 𝑝 (𝐳𝑠))
𝑠 𝐾𝐿 𝝓 <𝑡 𝜽

4 
−
𝑇
∑

𝑡=1
𝛼𝑛D𝐾𝐿(𝑞𝝓(𝐳𝑛𝑡 |𝐳

𝑛
<𝑡, 𝐱𝑡) ∥ 𝑝𝜽(𝐳𝑛𝑡 |𝐳

𝑛
<𝑡))

−
𝑇
∑

𝑡=1
𝛼𝑐D𝐾𝐿(𝑞𝝓(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡, 𝐱𝑡) ∥ 𝑝𝜽(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡))

]

, (6)

where 𝛼𝑠, 𝛼𝑛 and 𝛼𝑐 are hyperparameters for balancing the independent 
constraints and reconstructions.

Theorem  1 shows that with the help of variational inference, the la-
tent space of non-stationary time series which contains three subspaces 
(i.e., 𝐳𝑐 , 𝐳𝑛 and 𝐳𝑠) can be jointly inferred and the learned causal factors 
can be improved while optimizing the predictor. However, we notice 
that it is not enough to ensure the causal information to be excluded 
from non-causal factors, which accordingly may result in 𝐳𝑛 capturing 
both shape and color of digits in Fig.  2. Besides, recent works on time 
series generation focus on how to explicitly disentangle dynamic and 
static information, which is also worth considering in our model. To 
address these, we propose novel regularization terms based on the 
information theory to achieve latent factor disentanglement.

4.2. Mutual information constraints

Since there is no disentanglement without inductive bias as dis-
cussed by Locatello et al. [33], to ensure better disentanglement, we 
introduce two constraints for latent variables based on information 
theory. The first one is designed for disentangling the causal and non-
causal information. To this end, we can minimize the terms 𝐼(𝐳𝑐 , 𝐳𝑛) and 
𝐼(𝐳𝑐 , 𝐳𝑠), which denote the mutual information of causal factors 𝐳𝑐 and 
non-causal factors 𝐳𝑛, 𝐳𝑠, respectively. The second one aims to disen-
tangle dynamic and static information, which has been commonly seen 
in recent literature of disentangled sequential data generation [34,35]. 
This would benefit the disentanglement performance and improve the 
learned dynamic causal factors. Specifically, we minimize the upper 
bound of mutual information between dynamic and static factors, 
i.e., 𝐼(𝐳𝑐 , 𝐳𝑠).

It is known that estimating mutual information is not easy, since 
it requires underlying marginal and joint distributions of continuous 
latent variables, i.e., 𝐼(𝐳𝑎, 𝐳𝑏) ∶= ∫𝐳𝑎 ,𝐳𝑏 𝑝(𝐳

𝑎, 𝐳𝑏) log 𝑝(𝐳𝑎 ,𝐳𝑏)
𝑝(𝐳𝑎)𝑝(𝐳𝑏) . Although 

marginal priors can be normal distributions, the joint distribution still 
cannot be estimated due to unknown interactions between different 
variables. Previous studies have made a few attempts towards finding 
a tractable upper bound of mutual information [36,37]. However, they 
avoid the calculation of joint distribution by transforming it into a 
conditional form, i.e., 𝑝(𝐳𝑎|𝐳𝑏) or 𝑝(𝐳𝑏|𝐳𝑎), which is not interpretable and 
thus still hard to estimate in our problem.

Therefore, we propose a novel tractable upper bound of 𝐼(𝐳𝑐 , 𝐳𝑛), 
𝐼(𝐳𝑐 , 𝐳𝑠) and 𝐼(𝐳𝑛, 𝐳𝑠) without estimating conditional distributions. 

Theorem 2.  Let 𝐳𝑎 and 𝐳𝑏 be any two of three latent factors inferred 
by DCSVAE, the upper bound of mutual information with respect to these 
factors can be formulated by: 
𝐼(𝐳𝑎, 𝐳𝑏) ≤ E𝑝̂(𝐳𝑎 ,𝐳𝑏)[𝛾(𝐳𝑎, 𝐳𝑏)] − E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[𝛾(𝐳𝑎, 𝐳𝑏)] ≜ 𝑀𝐼 (𝐳𝑎, 𝐳𝑏), (7)

where 𝑝̂(𝐳) denotes the marginal density function approximation of 𝑝(𝐳), and 
𝛾(𝐳𝑎, 𝐳𝑏) is a parameterized normalized critic function. 
Discussions. To ensure disentanglement, we adopt mutual information 
constraints for latent factors. It is not feasible to calculate and optimize 
the mutual information directly. Therefore, we need a tractable bound 
of mutual information as a surrogate objective. There exist some upper 
bounds to mutual information [36–38]. However, their computation all 
require the known conditional probability (here is 𝑝(𝐳𝑎|𝐳𝑏) or 𝑝(𝐳𝑏|𝐳𝑎)), 
which is intractable and uninterpretable in our latent factors disen-
tanglement problem since there is no conditional relationship between 
them. For this reason, we transform the conditional distribution into the 
joint one and introduce the energy-based critic to make it tractable.
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Fig. 3. Overview of our proposed DCSVAE. Given a sequential data 𝑥1∶𝑇 . Our model 
learns three disentangled latent factors: dynamic causal factors 𝐳𝑐1∶𝑇 , dynamic and static 
non-causal factors 𝐳𝑛1∶𝑇 , 𝐳𝑠.

Algorithm 1 Training DCSVAE.
Input: training set {𝐱𝑖1∶𝑇 , 𝐲𝑖1∶𝑇 }𝑁𝑖 ; fixed training epochs  ; mini-batch 

size ; three latent encoders and predictor; model hyperparameters 
𝛼𝑠, 𝛼𝑛, 𝛼𝑐 , 𝛽, and initialized parameters of DCSVAE.

Output: Optimized dynamic causal factors encoder 𝑞𝝓∗ (𝐳𝑐1∶𝑇 |𝐱1∶𝑇 ) and 
predictor 𝑝𝜽∗ (𝐲1∶𝑇 |𝐳𝑐1∶𝑇 ).

1: Initialize 𝑒 ← 1
2: while 𝑒 ≤  do
3:  Draw a mini-batch samples {𝐱𝑖1∶𝑇 , 𝐲𝑖1∶𝑇 }𝑖∈ from training set 
sequentially;

4:  Infer the latent factors 𝐳𝑐1∶𝑇 , 𝐳𝑛1∶𝑇 , 𝐳𝑠 as Eq. (5);
5:  Reconstruct 𝐱𝑖1∶𝑇  from latent factors as Eq. (3);
6:  Predict 𝐲𝑖1∶𝑇  from dynamic causal factors as Eq. (2);
7:  Minimize the objective via maximizing ELBO and minimizing 
upper bound of mutual information;

8:  Update the parameters of DCSVAE with Adam optimizer.
9:  𝑒 ← 𝑒 + 1
10: end while

In practice, we evaluate E𝑝̂(𝐳𝑎 ,𝐳𝑏) and E𝑝̂(𝐳𝑎)𝑝(𝐳𝑏) by drawing sam-
ples from the mini-batch. Specifically, we draw joint samples (𝐳𝑎, 𝐳𝑏)
from 𝑞𝝓(𝐳𝑎|𝐱(𝑖)1∶𝑇 ) and 𝑞𝝓(𝐳𝑏|𝐱

(𝑖)
1∶𝑇 ), where (𝑖) denotes a data point in 

mini-batch. Regarding the independent samples, we obtain them from 
distributions of different datapoints, i.e., 𝑞𝝓(𝐳𝑎|𝐱(𝑖)1∶𝑇 ) and 𝑞𝝓(𝐳𝑏|𝐱

(𝑗)
1∶𝑇 ).

Theorem  2 provides a tractable calculation to mutual information 
upper bound with the help of energy based critic function. Finally, our 
objective function can be written as:

𝐷𝐶𝑆𝑉 𝐴𝐸 = −𝐸𝐿𝐵𝑂

+ 𝛽(𝑀𝐼 (𝐳𝑐 , 𝐳𝑛) + 𝑀𝐼 (𝐳𝑐 , 𝐳𝑠) + 𝑀𝐼 (𝐳𝑛, 𝐳𝑠)), (8)

where 𝛽 is the hyperparameter for balancing the capacity of variational 
inference and mutual information constraints. Fig.  3 summarizes the 
overview of our model.

4.3. Training & prediction

We now present the training and prediction phases of our proposed 
model. Algorithm 1 summarizes the training phase of our proposed 
model for dynamic causal factors learning.

After convergence, the dynamic causal factors encoder and pre-
dictor are fetched to predict unseen test domains (cf. Algorithm 2). 
Although the optimized predictor 𝑝𝜽(𝐲1∶𝑇 |𝐳𝑐1∶𝑇 ) aims to predict a se-
ries of labels regarding the whole dynamic causal factors, our pro-
posed DCSVAE still works if we have only one label of a time series, 
depending on the implementation of the predictor.
5 
Algorithm 2 Prediction in DCSVAE.
Input: Non-stationary time series 𝐱𝑡𝑒1∶𝑇  from unseen test domain; 

optimized DCSVAE.
Output: Prediction of label 𝐲̂1∶𝑇 .
1: Fetch dynamic causal factors encoder 𝑞𝝓∗ (𝐳𝑐1∶𝑇 |𝐱1∶𝑇 ) and predictor 

𝑝𝜽∗ (𝐲1∶𝑇 |𝐳𝑐1∶𝑇 ) from optimized DCSVAE;
2: Infer dynamic causal factors 𝐳̂𝑐1∶𝑇  via 𝑞𝝓∗ (𝐳𝑐1∶𝑇 |𝐱1∶𝑇 ) from 𝐱𝑡𝑒1∶𝑇 ;
3: Predict 𝐲̂1∶𝑇  from 𝐳̂𝑐1∶𝑇  via predictor 𝑝𝜽∗ (𝐲1∶𝑇 |𝐳𝑐1∶𝑇 ).

4.4. Revisiting dcsvae

Two things that are worth noticing are: (1) The key data assump-
tions are that the time series exhibit non-stationarity and that both 
static and dynamic causal factors are present. Although DCSVAE  aims 
to solve the domain generalization problem for non-stationary time 
series where both source and temporal shifts occur, our model can 
also perform well within a non-stationary series, a.k.a., evolving do-
main generalization [19]. While tackling this problem, separating the 
dynamic and static information would also benefit the generative model 
optimization [32]. (2) As discussed above, non-temporal generalization 
techniques (e.g., IRM, VREx and SD) are inappropriate if the time 
series is non-stationary, because the dynamic and static non-causal 
factors are mixed up. On the other hand, these methods would achieve 
better performance under stationary setting intuitively, where there 
only exists static information. Since the non-causal factors are modeled 
explicitly by DCSVAE, the learned causal factors would make the 
above domain generalization methods capture invariant representation 
easier. Therefore, our proposed model can be a feature extractor, and 
achieve better performance under non-stationary setting combining 
with downstream domain generalization methods. 

5. Experiments

In this section, we compare our proposed DCSVAE with recent 
state-of-the-art baselines and conduct the ablation study to analyze 
the components. We also provide the visualization of latent factors 
with the trained inference model, showing the capability of our model 
disentangling the desired dynamic causal factors and others.

5.1. Experimental setup

5.1.1. Datasets
We conduct experiments on four synthetic datasets and two real-

world datasets [12]. (1) Fourier consists of one-dimensional signals, 
generated by inverse Fourier transformations from invariant high fre-
quency and spurious low frequency. We divide it into three source do-
mains according to spurious frequency peak correlations. (2) TCMNIST
has colored handwriting digit images which have a spurious relation 
between colors of digits and labels. The relations are manipulated and 
change with time, sources and both. The corresponding datasets are 
termed as TCMNIST-temporal, TCMNIST-source and TCMNIST-mixed, 
respectively. For TCMNIST-temporal, we divide the last three frames 
as three temporal domains which have different spurious correlations. 
For the other two datasets, we split them according to the sources with 
different spurious correlations. (3) LSA64 records 64 signed words in 
Argentinian Sign Language from 10 signers, each series which consists 
of 20 frames representing one signed word. We divide every two 
signers into a source domain. (4) Portraits is constructed for gender 
classification given photos of American teenagers across 26 states over 
108 years. We divide the dataset into 34 temporal domains by years. 
(5) PCL includes motor imagery EEG recordings for three datasets 
collected by different research groups: PhysionetMI, Cho2017, and 
Lee2019_MI. Each dataset represents a source domain, and the task 
involves generalizing motor imagery classification to unseen datasets 
using EEG measurements.  We summarize the dataset used in our 
experiments and corresponding distribution shifts in Table  1.
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Table 1
Datasets and types of distribution shifts.
 Datasets Source Temporal Sample size
 Fourier 3 7 12000  
 TCMNIST-source 3 7 52500  
 TCMNIST-temporal 7 3 52500  
 TCMNIST-mixed 3 3 52500  
 LSA64 3 3 3200  
 Portraits 3 3 37921  
 PCL 3 3 22598  

Table 2
Model architectures for each dataset.
 Datasets Extractor Predictor Decoder

 Fourier – LSTM FC  
 TCMNIST ConvNet LSTM ConvTranNet 
 LSA64 ResNet-50 Attention LSTM FC  
 Portraits ResNet-18 FC ConvTranNet 
 PCL EEGNet FC FC  

5.1.2. Baselines
We now provide detailed descriptions of baselines in our paper. We 

divide these baselines into two categories, model-agnostic methods and 
generative methods.

We first discuss the model-agnostic methods. Theoretically, these 
methods are suitable for both source and temporal generalization tasks 
because they only focus on distributions across domains instead of 
considering the source and temporal shifts separately. Generally, they 
all try to find invariance across domains from data except ERM. Here 
are these model-agnostic methods:

• ERM [39] minimizes the average empirical risks across different 
domains.

• IRM [16] is based on ERM, with a penalty term minimizing the 
local empirical risk across domains.

• IB-ERM & IB-IRM [26] are extensions of ERM and IRM, re-
spectively. These approaches incorporate information bottleneck 
constraints into ERM and IRM for better generalization ability.

• VREx [22] performs ERM with a constraint minimizing the vari-
ance of empirical risks across domains.

• SD [40] extends ERM by regularizing the L2 norm of logits, which 
contributes to find domain invariant representation.

We also compare our DCSVAE with the recent generative methods 
for domain generalization:

• DIVA [27] aims to find domain invariant representation by a 
variational autoencoder. Specifically, it separates latent factors 
into label information, domain information, and remainder.

• LSSAE [19] is designed for temporal generalization, a.k.a., evolv-
ing domain generalization. It also models three independent fac-
tors, considering the covariate and concept shifts. It is noted that 
one latent factor is inferred by label series. Thus LSSAE will fail 
if we do not have label series.

• AIRL [41], which is short for adaptive invariant representation 
learning, aims at non-stationary setting in domain generalization 
as well. The core difference between this work and ours is that our 
proposed explicitly disentangle the causal factors and non-causal 
factors. 

5.1.3. Model architectures
The model architectures for each dataset are summarized in Table 

2. For fair comparison, we fix the feature extractor and predictor for 
each dataset.

• Fourier. Since Fourier consists of one-dimensional signals, we do 
not use any feature extractor. In addition, we take two LSTM 
layers with two fully connected layers as the predictor.
6 
• TCMNIST. For the three TCMNIST datasets, all the inputs are the 
sequences of colored MNIST images, thus we use the same extrac-
tor and predictor for them. We leverage MNIST ConvNet provided 
by [15] to extract the representation from MNIST images. The 
predictor for TCMNIST is a network with an LSTM layer.

• LSA64. The size of each video frame from LSA64 is 3 × 224 × 224. 
To extract representation, we use a frozen ResNet-50 model, 
which was pre-trained on ImageNet, as a feature extractor. The 
predictor is an LSTM models with a self-attention layer, and a 
fully connected network.

• Portraits. The feature extractor is a frozen ResNet-18 pre-trained 
on ImageNet which is similar to LSA64. The predictor is imple-
mented by a fully connected layer.

• PCL. For this dataset, we employ a deep convolutional neu-
ral network (CNN) model, EEGNet, as proposed by Lawhern 
et al. [42]. This model was selected due to its strong recognition 
and widespread acceptance within the EEG research community. 

Note that for baselines and our proposed model, the architectures 
of the above extractors and predictors are fixed for each dataset. The 
generative models (i.e., DIVA, LSSAE and ours) are implemented by 
encoder–decoder architectures, and the feature extractor can work as 
a encoder with reparameterization trick. Therefore we need the extra 
decoders for these methods. For Fourier, we implement it with a fully 
connected network. For TCMNIST and Portraits, we use transposed 
convolution and batch normalization to reconstruct the MNIST images. 
Additionally, we notice that reconstructing images in LSA64 is very 
time-consuming. Considering the efficiency, we aim to reconstruct the 
representation generated by ResNet-50 with a fully connected network, 
and this has been proven to be effective and efficient experimentally.

5.1.4. Evaluation settings
Here we evaluate our proposed model under two settings, i.e., source 

generalization and temporal generalization. The former is non-stationary 
time series domain generalization defined above where we intend to 
predict the labels of unseen source domains. We conduct experiments 
under this setting on Fourier, TCMNIST-source, TCMNIST-mixed and 
LSA64 datasets. The latter is evolving domain generalization, mainly 
considering temporal shift within one time series. The goal is to predict 
the label of future data given past data and labels. TCMNIST-temporal 
and Portraits are used in this setting.

5.1.5. Model selection
Since test domains are not accessible while OOD generalization 

training, it is vital for selecting the right model by validation as 
emphasized in [15]. Here we adopt two model selection methods to 
fully show generalization ability of proposed model: (1) train-domain 
validation. We use a validation set from train domain to select the 
model which complies with real generalization scenario; (2) test-domain 
validation. The validation set is from test domain. We train models in 
fixed epochs and select the model that performs the best in the final 
epoch. Though it is impossible to access to test domain in practice, this 
selection method could provide more insights about the generalization 
ability.

5.2. Performance comparison

The results of the above baselines and the proposed method are 
reported in Table  3. Note that LSSAE needs a series of labels, so it fails 
to work on datasets with only one label per sequence. For synthetic 
datasets, we have two high spurious correlation domains 𝐴,𝐵 and a low 
one 𝐶. We aim to predict 𝐶 by a model trained on 𝐴 and 𝐵 to evaluate 
the generalization ability when distributions shift. For the Portraits 
dataset, our task is predicting the gender of future images trained on the 
past images and labels. It is noted that for the LSA64 dataset, we have 
five different source domains, and we evaluate these domains one by 
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Table 3
Comparison of test accuracy (%) for DCSVAE and baselines with the train-domain validation (top 10 rows) and the test-domain 
validation (bottom 10 rows). The best results are in bold, and the second best ones are underlined.
 Datasets Fourier TCMNIST LSA64 Portraits PCL Average 
 Methods Source Temporal Mixed  
 

Train-domain Val

ERM 9.55 10.27 10.46 8.50 48.78 87.37 63.47 34.06  
 IRM 9.35 10.04 10.04 8.10 46.31 85.68 63.22 33.25  
 IB-ERM 10.08 9.99 10.04 8.58 57.28 86.87 63.76 35.23  
 IB-IRM 9.97 10.05 10.04 8.10 53.71 86.63 63.53 34.58  
 VREx 9.74 10.04 10.05 8.10 46.11 87.59 59.44 33.01  
 SD 9.70 9.99 10.05 8.45 50.74 88.53 60.98 34.06  
 DIVA 9.60 10.08 11.38 8.48 58.24 88.26 64.46 35.79  
 LSSAE – 10.04 16.41 8.89 – 89.06 62.06 –  
 AIRL 9.69 10.08 15.74 8.75 55.35 88.65 64.52 36.11  
 DCSVAE 9.59 11.07 18.26 8.95 62.06 90.09 64.37 37.77  
 

Test-domain Val

ERM 9.28 25.03 19.58 14.60 56.82 87.59 63.51 39.49  
 IRM 57.68 50.57 49.92 52.27 46.48 86.64 63.87 58.20  
 IB-ERM 9.28 23.56 29.90 32.55 59.78 87.37 63.38 43.69  
 IB-IRM 52.22 50.66 51.05 50.63 55.51 87.31 63.75 60.00  
 VREx 65.39 50.20 49.67 49.30 52.32 87.44 60.31 59.23  
 SD 9.28 23.89 19.03 15.73 58.62 88.92 61.46 39.56  
 DIVA 57.31 51.81 50.42 53.72 60.48 88.41 64.11 60.89  
 LSSAE – 50.31 51.77 55.26 – 89.29 64.47 –  
 AIRL 55.15 50.66 51.58 53.33 57.43 88.91 64.73 60.26  
 DCSVAE 58.04 53.25 52.11 57.32 62.44 89.35 65.55 62.58  
Fig. 4. Comparison of test accuracy of our proposed DCSVAE and baselines (Source, Temporal, and Mixed are short for TCMNIST-source, TCMNIST-temporal, and TCMNIST-mixed, 
respectively).
one. Note that we compare our proposed with baselines in train-domain 
and test-domain validation settings, and the overall result is shown in 
Fig.  4.

We first discuss the performances on synthetic datasets. Our pro-
posed model does not perform the best on the Fourier dataset. The 
plausible explanation is that the information embedded in a one-
dimensional series is not enough to capture desired causal factors. 
In contrast, DCSVAE outperforms all baselines across three TCMNIST 
image datasets. Furthermore, note that the model-agnostic baselines 
drop in performance with the train-domain validation, but our model 
achieves state-of-the-art performance regardless of which validation 
setting is adopted. We attribute this amazing improvement to well-
learned dynamic causal factors. For real-world datasets, the non-
stationary property is not as significant as carefully constructed syn-
thetic datasets. Therefore, the performance of generalization methods 
is not remarkable, and yet our model achieves superior performance 
against baselines.  The real-world dataset we use including LSA64, 
Portrait, and PCL, the last one can be considered representative of 
7 
healthcare data. The results on these datasets suggest that our proposed 
model has notable advantages, as patient records inherently involve 
both source and temporal shifts. These characteristics are effectively 
addressed by DCSVAE, demonstrating its potential to tackle complex, 
real-world datasets in domains like healthcare. The ability to han-
dle such challenges underscores the model’s robustness and practical 
applicability. 

5.3. Ablation study

Overall, our proposed DCSVAE has two major components:
encoder–decoder (P1) and mutual information constraints (P2). To 
analyze the effect of each component, we intentionally construct two 
groups of variants w.r.t. the two components. There are three variants 
in group P1, including w/o 𝐳𝑠&𝐳𝑛, w/o 𝐳𝑠 and w/o 𝐳𝑛. Specifically, w/o 
𝐳𝑠&𝐳𝑛 only learns a series of latent factors like VRNN, w/o 𝐳𝑠 means 
source shifts are not taken into consideration, and w/o 𝐳𝑛 denotes 
ignoring the temporal shifts within time series. As for group P2, we 
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Table 4
Ablation results of DCSVAE  and variants, P1 denotes changes upon encoder–decoder 
architectures, and P2 indicates different kinds of constraints.
 Datasets TCMNIST

 Methods Source Temporal Mixed  
 
P1

w/o 𝐳𝑠 & 𝐳𝑛 9.77 ± 0.39 10.03 ± 0.25 8.45 ± 0.34  
 w/o 𝐳𝑠 10.17 ± 0.62 15.98 ± 1.33 8.33 ± 0.12  
 w/o 𝐳𝑛 10.73 ± 0.89 13.69 ± 1.05 8.10 ± 0.35  
 
P2

w/o causal 10.79 ± 0.37 18.13 ± 1.72 8.73 ± 1.95  
 w/o dynamic 10.94 ± 0.66 17.94 ± 3.86 8.49 ± 0.84  
 w/o both 10.75 ± 0.50 16.51 ± 0.44 8.51 ± 0.69  
 DCSVAE 11.02 ± 0.83 18.26 ± 5.41 8.95 ± 0.40 

Fig. 5. Visualization of three latent factors learned by our DCSVAE and its variants in 
group P2 with 2-D UMAP.

have three variants which drop the constraints of causal/non-causal in-
formation (w/o causal), dynamic/static information (w/o dynamic) and 
both (w/o both). We conduct these ablation experiments on TCMNIST 
and the results are represented in Table  4. 

DCSVAE outperforms all other variants, indicating the effectiveness 
of each component we designed. Furthermore, the mutual information 
constraints we employ aim to disentangle latent factors. To understand 
the latent factors learned by our proposed model, we extract the latent 
factors learned by DCSVAE and variants in P2 on TCMNIST-mixed and 
visualize these three embedding vectors in a 2D space using Umap. The 
visualization results are shown in Fig.  5. We find that DCSVAE without 
mutual information constraints could mix up all latent factors, resulting 
the overlapping in the latent space. In contrast, minimizing the mutual 
information can force the latent factors to be disentangled (cf. Fig. 
5(d)). More interestingly, comparing Figs.  5(b) and 5(c), the constraint 
of causal/non-causal information is less important than another one, 
we think prediction from causal factors (cf. Eq. (2)) is beneficial to 
separating the causal/non-causal factors to some extent.

5.4. On the off-the-shelf generalization

For the proposed DCSVAE and its variants, we incorporate the 
above model-agnostic generalization methods. They are evaluated on 
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Table 5
Results of DCSVAE  and its variants on improving off-the-shelf generalization
methods.
 Datasets TCMNIST

 Methods Source Temporal Mixed  
 w/ ERM 11.02 ± 0.83 18.26 ± 5.41 8.95 ± 0.40 
 w/ IRM 10.21 ± 0.09 18.17 ± 1.46 8.79 ± 0.34  
 w/ IB-ERM 10.96 ± 0.87 18.30 ± 5.38 8.93 ± 0.40  
 w/ IB-IRM 10.22 ± 0.11 18.16 ± 1.43 8.79 ± 0.36  
 w/ VREx 10.22 ± 0.08 18.13 ± 0.76 8.81 ± 0.34  
 w/ SD 11.04 ± 1.09 20.03 ± 7.60 8.86 ± 0.39  

the TCMNIST dataset, and the results are reported in Table  5, where 
‘‘w/ baseline’’ denotes DCSVAE with the corresponding baseline. Note 
that we evaluate these methods with the test-domain validation for 
comparison.

By comparing the variants with raw baselines, we notice that our 
proposed model improves the performance of baselines in general. The 
results are in line with our expectation, since the learned dynamic 
causal factors could make prediction easier. Another interesting obser-
vation is that SD works worse than other baselines but the performance 
of w/ SD is very close to others (cf. Tables  3 and 5). We think the 
reversal of relations happens because SD does not exclude spurious non-
causal factors explicitly [40], and DCSVAE helps SD separate causal and 
non-causal information, thus performing better than w/ ERM.

6. Conclusion

In this paper, we proposed DCSVAE, a generative model that can 
disentangle three latent factors through constraining mutual informa-
tion for better generalizing across non-stationary time series. Extensive 
empirical results demonstrated its superior performance over conven-
tional domain generalization methods in both source and temporal 
generalization tasks. Additionally, the learned dynamic causal factors 
can improve the performance of conventional domain generalization 
methods under the non-stationary setting, because the dynamic and 
static factors can be mixed up easily and can be excluded from causal 
factors in our proposed method. 

However, there are some limitations to the proposed method.
Firstly, DCSVAE incurs additional computational costs due to mutual 
information constraints, which raises concerns about scalability. Specif-
ically, when applied to very large datasets, the length of dynamic 
factors can become a bottleneck for computational efficiency. Secondly, 
the process of learning distinct latent factors may require a substantial 
amount of labeled data. Besides, we notice that dynamic causal factors 
do not necessarily change all the time. This may hinder modeling causal 
factors which are assumed to vary along time. Thus, we expect to 
capture segmented dynamic causal factors rather at the time step level, 
which might benefit non-stationary time series modeling. Due to the 
distributional assumptions of the data, careful consideration is required 
when applying the model to new domains, such as climate modeling, 
where the data may not adhere to these assumptions. This could be a 
potential improvement in this direction.
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Appendix. Details of theoretical proof

Theorem  1.  Combined with above causal graph of non-stationary time 
series as shown in Fig.  1(d), the evidence lower bound of likelihood (cf. 
Eq. (4)) in DCSVAE  is: 
𝐸𝐿𝐵𝑂 = E𝑃 𝑡𝑟

[

E
[

log 𝑝𝜽(𝐲1∶𝑇 |𝐳𝑐1∶𝑇 )
]

+ E𝑞𝝓 [log 𝑝𝜽(𝐱1∶𝑇 |𝐳
𝑐
1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑐 )]

− 𝛼𝑠D𝐾𝐿(𝑞𝝓(𝐳𝑠|𝐱<𝑡) ∥ 𝑝𝜽(𝐳𝑠))

−
𝑇
∑

𝑡=1
𝛼𝑛D𝐾𝐿(𝑞𝝓(𝐳𝑛𝑡 |𝐳

𝑛
<𝑡, 𝐱𝑡) ∥ 𝑝𝜽(𝐳𝑛𝑡 |𝐳

𝑛
<𝑡))

−
𝑇
∑

𝑡=1
𝛼𝑐D𝐾𝐿(𝑞𝝓(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡, 𝐱𝑡) ∥ 𝑝𝜽(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡))

]

, (A.1)

where 𝛼𝑠, 𝛼𝑛 and 𝛼𝑐 are hyperparameters for balancing the independent 
constraints and reconstructions.

Proof.  It is intractable to estimate the likelihood straightly given 
training data, since 𝑝𝜽(𝐱1∶𝑇 , 𝑦) = ∫ 𝑝𝜽(𝐱1∶𝑇 , 𝑦, 𝐳𝑐 , 𝐳𝑛, 𝐳𝑠)d𝐳𝑐 d𝐳𝑛d𝐳𝑠 is 
difficult to estimate. Following past work on variational inference, 
we introduce inference models where latent factors can be sampled 
easily, making likelihood estimation tractable. According to the above 
discussion about generative and inference models, the latent space 
would be split into three spaces, denoted as 𝐳𝑐 , 𝐳𝑛 and 𝐳𝑠. We substitute 
these prior and posterior distributions with Eqs. (1)–(3) and Eq. (5), 
then the ELBO objective can be derived as (we omit the expectation 
note E𝑃 𝑡𝑟 (⋅) for brevity):
logE

[

𝑝𝜽(𝐱1∶𝑇 , 𝑦, 𝐳𝑐1∶𝑇 , 𝐳
𝑛
1∶𝑇 , 𝐳

𝑠)
]

(A.2)

≥ E
[

log 𝑝𝜽(𝐱1∶𝑇 , 𝑦, 𝐳𝑐1∶𝑇 , 𝐳
𝑛
1∶𝑇 , 𝐳

𝑠)
]

(A.3)

= E
[

log
[

𝑝𝜽(𝑦|𝐳𝑐1∶𝑇 )𝑝𝜽(𝐱1∶𝑇 , 𝐳
𝑐
1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑠)
]]

(A.4)
= E𝑞𝝓

[

log 𝑝𝜽(𝑦|𝐳𝑐1∶𝑇 )
]

+ E𝑞𝝓

[

log
𝑝𝜽(𝐱1∶𝑇 , 𝐳𝑐1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑠)
𝑞𝝓(𝐳𝑐1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑠
|𝐱1∶𝑇 )

]

(A.5)

= E𝑞𝝓

[

log 𝑝𝜽(𝑦|𝐳𝑐1∶𝑇 )
]

+ E𝑞𝝓 [log 𝑝𝜽(𝐱1∶𝑇 |𝐳
𝑐
1∶𝑇 , 𝐳

𝑛
1∶𝑇 , 𝐳

𝑐 )]

− D𝐾𝐿(𝑞𝝓(𝐳𝑠|𝐱<𝑡) ∥ 𝑝𝜽(𝐳𝑠))

−
𝑇
∑

𝑡=1
D𝐾𝐿(𝑞𝝓(𝐳𝑛𝑡 |𝐳

𝑛
<𝑡, 𝐱𝑡) ∥ 𝑝𝜽(𝐳𝑛𝑡 |𝐳

𝑛
<𝑡))

−
𝑇
∑

𝑡=1
D𝐾𝐿(𝑞𝝓(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡, 𝐱𝑡) ∥ 𝑝𝜽(𝐳𝑐𝑡 |𝐳

𝑐
<𝑡)), (A.6)

where the inequality holds due to the concavity of logarithm function, 
the first term is the prediction for labels, the second term denotes the 
reconstruction of input time series and the last three terms are KL-
divergence values which are regularizations aligning posterior distribu-
tions with corresponding prior distributions. Inspired by beta-vae [43], 
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we introduce three coefficients 𝛼𝑠, 𝛼𝑛 and 𝛼𝑐 to balance the independent 
constraints and reconstructions. ■

Theorem  2.  Let 𝐳𝑎 and 𝐳𝑏 be any two of three latent factors inferred 
by DCSVAE, the upper bound of mutual information with respect to 
these factors can be formulated by: 
𝐼(𝐳𝑎, 𝐳𝑏) ≤ E𝑝̂(𝐳𝑎 ,𝐳𝑏)[𝛾(𝐳𝑎, 𝐳𝑏)] − E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[𝛾(𝐳𝑎, 𝐳𝑏)] ≜ 𝑀𝐼 (𝐳𝑎, 𝐳𝑏), (A.7)

where 𝑝̂(𝐳) denotes the marginal density function approximation of 𝑝(𝐳), 
and 𝛾(𝐳𝑎, 𝐳𝑏) is a parameterized normalized critic function.

Proof.  Here, the normalized critic function 𝛾(𝐳𝑎, 𝐳𝑏) denotes an energy-
based variational family of the joint distribution [44], i.e.: 

𝑝(𝐳𝑎, 𝐳𝑏) = 𝑝(𝐳𝑎)𝑝(𝐳𝑏)


𝑒𝛾(𝐳
𝑎 ,𝐳𝑏), (A.8)

where  = E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[𝑒𝛾(𝐳
𝑎 ,𝐳𝑏)] is a expected value that is irrelevant to 𝐳𝑎

and 𝐳𝑏. With this formula, we can derive Eq. (A.7) by applying it into 
an existing upper bound CLUB [37]:
𝐼(𝐳𝑎, 𝐳𝑏) ≤ 𝐼CLUB (A.9)

= E𝑝̂(𝐳𝑎 ,𝐳𝑏)[log 𝑝̂(𝐳𝑎|𝐳𝑏)] − E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[log 𝑝(𝐳𝑎|𝐳𝑏)] (A.10)

= E𝑝̂(𝐳𝑎 ,𝐳𝑏)[log 𝑝(𝐳𝑎, 𝐳𝑏)] − E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[log 𝑝(𝐳𝑎, 𝐳𝑏)] (A.11)

= E𝑝̂(𝐳𝑎 ,𝐳𝑏)[log 𝑝(𝐳𝑎) + log 𝑝(𝐳𝑏) + 𝛾(𝐳𝑎, 𝐳𝑏) − log] (A.12)

− E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[log 𝑝(𝐳𝑎) + log 𝑝(𝐳𝑏) + 𝛾(𝐳𝑎, 𝐳𝑏) − log] (A.13)

= E𝑝̂(𝐳𝑎 ,𝐳𝑏)[𝛾(𝐳𝑎, 𝐳𝑏)] − E𝑝̂(𝐳𝑎)𝑝̂(𝐳𝑏)[𝛾(𝐳𝑎, 𝐳𝑏)] (A.14)

≜ 𝑀𝐼 (𝐳𝑎, 𝐳𝑏). (A.15)

Thus, our proposed 𝑀𝐼  is a valid upper bound to mutual
information. ■

Data availability

The datasets are publicly available and well-known in the literature.
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