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Abstract
Network traffic anomaly detection is pivotal in cybersecurity, espe-
cially as data volume grows and security requirement intensifies.
This study addresses critical limitations in existing reconstruction-
based methods, which quantify anomalies relying on intra-sample
differences and struggle to detect drifted anomalies. In response, we
propose a novel approach, the Uncertainty-Inspired Inter-Sample
Differences (UnDiff) method, which leverages model uncertainty to
enhance anomaly detection capabilities, particularly in scenarios in-
volving anomaly drift. By employing evidential learning, the UnDiff
model gathers evidence to minimize uncertainty in normal network
traffic, enhancing its ability to differentiate between normal and
anomalous traffic. To overcome the limitations of intra-sample
difference quantification in reconstruction-based methods, we pro-
pose a novel anomaly score based on inter-sample uncertainty
deviation that directly quantifies the anomaly degree. Benefiting
from a concise model design and parameterized uncertainty quan-
tification, UnDiff achieves high efficiency. Extensive experiments
on three benchmarks demonstrate UnDiff’s superior performance
in detecting both undrifted and drifted anomalies with minimal
computational overhead.

CCS Concepts
• Security and privacy → Intrusion detection systems; • In-
formation systems → Traffic analysis.

Keywords
Network Traffic Anomaly Detection; Uncertainty Quantification;
Drifted Anomaly Detection; Zero-Positive Learning
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1 Introduction
Network traffic anomaly detection, a fundamental component of
cybersecurity infrastructure [53], plays a pivotal role in identifying
malicious activities across various network environments. As data
volumes surge exponentially and security requirements are strin-
gent, precisely identifying anomalous network traffic patterns has
emerged as a critical imperative. This capability underpins multiple
important applications, including enhancing the stability and relia-
bility of network services [13, 32] and fortifying personal privacy
protection mechanisms [25, 30].

Current literature on network traffic anomaly detection predom-
inantly employs a reconstruction-based “zero-positive learning”
paradigm [5, 21, 28, 53], which only reconstructs normal network
traffic distributions during the training phase, typically leverag-
ing architectures such as auto-encoder models [29]. Subsequently,
during the inference phase, common practice for evaluating anom-
aly degrees of network traffic is to utilize a distance-based metric
[3, 15, 34, 48, 53, 54], i.e., samples exhibiting significant distance de-
viation between their pre- and post-reconstruction representations
are identified as anomalous network traffic, while those demonstrat-
ing minimal divergence are considered as normal network traffic
(cf. left part of Figure 1(a)).

Despite the recent advancements in reconstruction-based meth-
ods for network traffic anomaly detection, an intrinsic limitation
persists. These approaches fully rely on intra-sample differences
of pre- and post-reconstruction from an egocentric perspective
while insufficiently leveraging inherent inter-sample differences,
i.e., the diverse distribution between normal and anomalous net-
work traffic [21]. This limitation is exacerbated by the potential
“identical shortcut” issue in reconstruction models [45]. Instead
of capturing differentiated characteristics of normal and anoma-
lous patterns, reconstruction-based methods tend to converge on
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Figure 1: Motivation for this work. (a) Existing methods en-
counter the “identical shortcut” issue, exemplified by the
proximity of pre- and post-reconstruction drifted anomalies.
(b) Our UnDiff is based on uncertainty-inspired inter-sample
differences, facilitating direct anomaly identification.

a set of shortcut parameters that merely replicate the input as
output [33, 35]. This limitation becomes particularly salient in de-
tecting drifted anomalies, where the distribution of anomalous data
evolves over time. The right part of Figure 1(a) visualizes the pre-
and post-reconstruction embedding of drifted anomalies using a
state-of-the-art reconstruction-based model Trident [53]. Empir-
ical observations indicate that the pre- and post-reconstruction
representations exhibit high proximity in the representation space.
The intra-sample differences do not satisfy the ideal institution of
reconstruction-based methods, thereby significantly impeding the
discrimination of drifted anomalies.

To address this limitation, we propose a novel Uncertainty-
Inspired Inter-SampleDifferences model (UnDiff). UnDiff leverages
the concept of model uncertainty to enhance the discriminative
capacity of anomaly detection systems, with particular empha-
sis on anomaly drift scenarios. As illustrated in Figure 1(b), the
key intuition of our model is rooted in the differential uncertainty
characteristics exhibited by normal and anomalous traffic patterns.
Normal samples, well-represented in the training data, manifest low
model uncertainty. Conversely, anomalous samples, particularly
drifted anomalies, induce higher uncertainty due to their devia-
tion from the learned normal patterns [21]. In contrast to existing
reconstruction-based methods, our proposed UnDiff addresses the
limitation above by directly facilitating inter-sample differences
rather than relying on the sub-optimal intra-sample quantification.

Central to our UnDiff is a novel uncertainty learning module that
quantifies model detection uncertainty. This module employs an
evidential learning approach [6], acquiring evidence from training
examples to construct an evidential distribution, facilitating robust
uncertainty modeling for normal network traffic. Furthermore, we
introduce explicit objectives to minimize uncertainty in normal
network traffic during training. These objectives provide a more
pronounced separation between normal and anomalous samples in
the uncertainty space. To overcome the limitation of intra-sample
disparity quantification in reconstruction-based methods, we fur-
ther propose an innovative uncertainty-inspired anomaly score
that adequately leverages inter-sample distributional differences
for detecting anomalies. Notably, thanks to the concise design of

the uncertainty learning module and the efficient parameterized un-
certainty quantification technique, the enhancements we proposed
above have negligible additional computational overhead. We con-
duct extensive experiments on real-world encrypted anomaly traffic
datasets and evaluate the performance of UnDiff in both undrifted
and drifted anomaly detections. Empirical results verified the effec-
tiveness of our proposed model in detection performance across
both scenarios. In summary, our key contributions are threefold:

• We propose a novel uncertainty-based evidential detection
framework from an inter-sample difference perspective. Un-
like the suboptimal intra-sample difference quantification
in existing methods, our approach better utilizes the prior
knowledge that anomalies inherently deviate from normal
patterns, achieving more effective anomaly detection, par-
ticularly in scenarios involving anomaly drift.

• We introduce an innovative uncertainty learning module and
a new anomaly score. This module provides an efficient and
robust method for capturing sample uncertainty, while the
anomaly score effectively quantifies inter-sample differences,
significantly enhancing the discriminative capacity of the
detection system.

• We conduct comprehensive empirical evaluations on three
real-world anomaly network traffic datasets. The results
demonstrate the effectiveness of our framework, UnDiff, in
detecting both drifted and undrifted anomalies.

2 Related Work
2.1 Network Traffic Anomaly Detection
Anomaly detection, particularly zero-positive learning anomaly
detection, has gained extensive attention. In this paradigm, only
normal data are available during training, and samples that devi-
ate from the learned model behavior are identified as anomalies
during inference. Existing methods can be broadly categorized into
three groups: distillation-based, statistics-based, and normalizing
flow-based approaches [31]. Distillation-based methods focus on
intra-sample differences, utilizing a student-teacher architecture to
compare the distilled disparities [50, 51]. Conversely, the statistic-
based [4, 11] and normalizing flow-based methods [19, 37] aim to
learn a mapping from an input domain to a low-dimensional dis-
tribution. These approaches quantify inter-sample differences by
analyzing deviations in the low-dimensional distribution. However,
these methods, primarily designed for natural images, often en-
counter significant limitations when applied to traffic data. This is
due to the unique characteristics of traffic images, such as redundant
high-frequency information and disordered texture [29, 54].

Current network traffic anomaly detection methods mainly fol-
low a reconstruction-based paradigm. These methods reconstruct
the normal traffic during training and employ intra-sample differ-
ences (i.e., disparities between pre- and post-reconstruction) to iden-
tify anomalies. A notable example is GANomaly [3], a prominent
reconstruction framework that utilizes a discriminator network to
improve normal sample modeling. MANomaly [48] introduce a dual
autoencoder adversarial training strategy to enhance representa-
tion learning, while ARCADE [34] employ WGAN-GP optimization
for more effective adversarial training. MFR [29] and MFAD [54]
identify a critical “identical shortcut” issue in traffic reconstruction
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and utilize low-pass filtering to mitigate this problem. Trident [53]
incorporates a U-Net structure to retain more detailed reconstruc-
tion information. Most anomaly detection methods for traffic data
focus on enhancing the reconstruction quality of normal samples.
However, these approaches often evade the “identical shortcut”
issue inherent in reconstruction-based models. To overcome this
limitation, we propose a novel paradigm based on inter-sample
differences. In contrast to the suboptimal intra-sample differences
employed by existing methods, we leverage the prior knowledge
that anomalous samples inherently deviate from normal samples,
achieving a more effective anomaly identification.

2.2 Uncertainty Learning
As deep learning models find increasingly widespread application
across diverse domains, accuracy is no longer the only criterion for
evaluation. In fields where safety is paramount, there is an urgent
need for more trustworthy neural networks. Reliable uncertainty
quantification emerges as a critical aspect in this context, as it
measures the model’s confidence in its output.

As elucidated in the literature [1, 9, 18, 26, 36], two primary
categories of uncertainties are associated with neural networks:
data uncertainty and model uncertainty. Data uncertainty arises
from noise or randomness in the input and can be reduced to zero
with sufficient training examples. For model uncertainty, Bayesian
learning-based networks provide a mathematically grounded frame-
work, albeit prohibitively expensive to implement and infer. Alter-
natively, Monte Carlo Dropout [17] approximates Bayesian infer-
ence on model parameters. Furthermore, leveraging the ensemble
learning paradigm, Deep Ensemble [27] integrates multiple models
for uncertainty estimation. To analyze data uncertainty, a unified
Bayesian learning-based method [26] has been proposed to directly
map input data to estimations of both data and model uncertain-
ties. Uncertainty learning has also received attention in the field of
anomaly detection, with approaches such as Bayesian learning [22]
and its variational approximations [20, 23, 24, 46].

Recently, evidential learning has emerged as a promising uncer-
tainty quantification approach [22, 39, 41]. This method enables
uncertainty estimation in a single model and forward pass with
parameterized distributions. In this approach, a neural network out-
puts the hyperparameters of an evidential distribution, allowing the
model to estimate both model and data uncertainties without requir-
ing sampling, thus enhancing the efficiency of uncertainty quantifi-
cation [6]. However, most existing works on evidential learning are
designed for supervised learning in computer vision [22] and ne-
cessitate large volumes of labeled data to estimate the uncertainty
distribution. This requirement does not fit the typical anomaly
detection setting. Therefore, in this study, we explore the applica-
tion of evidential learning for quantifying the anomaly degree of
network traffic in a zero-positive learning context.

3 Methodology
This section details our proposed uncertainty-inspired inter-sample
difference method, UnDiff. We describe the research problem and
introduce a novel research scenario, anomaly drift. Subsequently,
we explicate the requisite data processing modules. We then detail
our proposed uncertainty learning module, designed to learn the

uncertainty space, thereby facilitating the comparison of inter-
sample distribution differences. The schematic representation of
our methodological pipeline is illustrated in Figure 2.

3.1 Problem Statement
Network Traffic Anomaly Detection. This work investigates the
zero-positive learning anomaly detection problem in the context of
network traffic analysis. Let X = {x1, x2, ..., x𝑁 } denote a set of 𝑁
normal samples, where x𝑖 ∈ R𝑑 is a 𝑑-dimensional data instance.
The objective of detection models is to learn the distributional pat-
terns of normal samples during training. For inference, the model
assigns an anomaly score to each test sample xtest ∈ Xtest, where
Xtest represents the set of test samples. The magnitude of the anom-
aly score is positively correlated with the likelihood of a sample
being identified as anomalous.
Drifted Anomaly Detection. The dynamic nature of network
activities frequently leads to divergence in the distribution of test-
ing data, a phenomenon known as concept drift [15]. This drift
often results in the performance degradation of anomaly detection
systems [21, 54]. Existing research on concept drift in anomaly
detection primarily focuses on two scenarios: whole drift, where
both normal and anomalous data experience drift [7, 8, 44, 53] and
normal drift, where only normal data undergoes drift [21]. How-
ever, this study addresses a more realistic scenario: anomaly drift,
wherein only anomalous data experience drift. This scenario is
particularly relevant because, in real-world applications, normal
network traffic patterns typically exhibit relative stability, whereas
anomalous network traffic patterns often change due to the evolu-
tion of attack strategies. Consequently, our research emphasizes
the generalization capability of the anomaly detection model when
confronted with drifts in the distribution of anomalous data.

3.2 Data Preprocessing
Network traffic fundamentally manifests as a flow format compris-
ing an ordered sequence of packets. In contrast to statistical features
designed based on manual heuristics [34, 48], we directly utilize
the original traffic packet information for network traffic modeling.
This approach circumvents the introduction of bias associated with
manually crafted features. A critical consideration in the data pro-
cessing of network flows is the appropriate representation method,
as it significantly influences the detection accuracy and computa-
tional overhead. In this study, we employ a Multi-Channel Traffic
Image Construction strategy for traffic flow representation. This
approach allows for a more comprehensive and nuanced capture of
the multidimensional nature of network traffic.
Multi-Channel Traffic Image Construction.While image-based
single packet processing has been widely adopted in network traffic
anomaly detection [14, 54], the potential of flow-level image con-
struction remains largely unexplored. Drawing inspiration from
video anomaly detection methodology [49], which addresses spa-
tiotemporal representation tasks, we propose a novel approach to
network flow representation. In our method, we formulate each
network flow as a multi-channel image analogous to a video frame
sequence. The specific channel order is determined by the packets’
chronological arrival, preserving the flow’s temporal dimension.
This approach offers two significant advantages: (i) Dimensional
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Figure 2: Overall framework of UnDiff. (a) Training: Uncertainty-Inspired Modeling Process. UnDiff first extracts informative
representations from normal network traffic. These refined representations are then utilized to instruct uncertainty parameters
for uncertainty representation. (b) Inference: Anomaly Metric Process. UnDiff directly outputs model uncertainty to quantify
anomalies by assessing inter-sample differences via a distribution prior that differentiates normal and anomalous traffic.

Efficiency: By extending the representation along the channel di-
mension rather than width and height, we reduce the generation
of subsequent high-dimensional feature maps. This design choice
ensures enhanced inference speed. (ii) Informative Representation
Preservation: Crucially, this approach adequately preserves infor-
mative representations as the contextual relationships between
packets (represented as multi-channel images), reflecting the spa-
tiotemporal characteristics of network flows. This temporal and
spatial information preservation is critical for capturing the nu-
anced patterns that may indicate anomalies. For each traffic image,
we implement a low-pass filtering process to mitigate noise. This
step is necessitated by the unique characteristics of traffic images,
which, in contrast to natural images, exhibit a chaotic and texture-
less state [29, 54]. This phenomenon arises from the abundance
of high-frequency components inherent in network traffic data.
However, these high-frequency components often manifest as detri-
mental noise, impeding the model’s ability to generalize effectively
due to the excessive complexity of the information.

3.3 Proposed UnDiff
As shown in Figure 2(a), our UnDiff contains two main components:
an evidence extractor to extract evidence and a novel uncertainty
learning module to construct an uncertainty space for subsequent
anomaly quantification and detection.

3.3.1 Evidence Extractor. The autoencoder is designed to process
original input traffic x, encoding it into a latent evidence represen-
tation z, and subsequently decoding it to produce a reconstruction
of the input x̂. Given that the input is a multi-channel image, we
employ Convolutional Neural Networks (CNNs) as the encoder,
following established practices in the literature [34, 54]. It is im-
perative to note that network traffic inherently comprises a se-
ries of packet sequences with distinct spatiotemporal character-
istics [29, 52]. However, previous autoencoder-based reconstruc-
tion methods have primarily focused on enhancing reconstruction
quality, often neglecting the crucial spatiotemporal relationships
inherent in the network packets. To address this limitation, we
introduce a spatiotemporal aware channel-spatial based attention
mechanism, specifically the Convolutional Block Attention Module
(CBAM) [43], into our autoencoder architecture. This approach en-
ables us to assign higher importance to significant channel images
(temporal features) and spatially relevant regions (spatial features),
thereby facilitating the extraction of evidence for critical patterns
in multi-channel images.

3.3.2 Uncertainty LearningModule. The predominant zero-positive
learning paradigm for anomaly network traffic typically frames
this task as a reconstruction problem, optimizing the similarity
loss of the original input x and the reconstructed output x̂. The
intra-sample differences between pre- and post-reconstruction from
an egocentric perspective are utilized to quantify the anomaly de-
grees. However, this paradigm exhibits suboptimal performance
due to two primary limitations. Firstly, comparing the differences
between samples before and after reconstruction does not directly
address the fundamental nature of the problem: anomalous traffic
is inherently defined relative to normal traffic patterns. Secondly,
the classical “identical shortcut” problem inherent in autoencoder
architectures significantly impacts the intra-sample differences of
anomalous samples, particularly leading to performance degrada-
tion in scenarios involving anomaly drift.

To address these issues concurrently, we propose a novel uncer-
tainty learning module designed to construct an uncertainty space,
facilitating direct inter-sample comparisons to detect anomalous
network traffic. This module is based on estimating the detection
uncertainty, explicitly focusing on model uncertainty, also known
as epistemic uncertainty. Model uncertainty quantifies the uncer-
tainty in estimating model parameters given the training data, ef-
fectively measuring the degree of congruity between the model and
the data [1]. We posit that this model uncertainty score is intrinsi-
cally linked to anomalous patterns and can be leveraged to identify
anomalies effectively. The fundamental intuition underpinning our
methodology is rooted in the differential uncertainty characteristics
exhibited by normal and anomalous traffic patterns [21]. Normal
samples, well-represented in the training data, typically manifest
low model uncertainty. Conversely, anomalous traffic, particularly
in the context of drifted anomalies, induces higher uncertainty due
to its deviation from the learned normal patterns.

The uncertainty learning module comprises an encoder and a
group of uncertainty parameter heads. The encoder, which shares
its architectural design with the preceding encoder of the evidence
extractor, is based on the reconstruction output x̂. It processes the re-
construction x̂ as input and generates an uncertainty representation
𝛾 , quantifying the model’s detection uncertainty. The uncertainty
parameter heads, implemented as linear layers, translate the uncer-
tainty representation 𝛾 into their corresponding uncertainty param-
eters. This transformation facilitates effective uncertainty modeling.
Through this mechanism, we explicitly incorporate evidential learn-
ing to quantify evidence distribution of normal network traffic. In
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contrast to Bayesian Neural Networks (BNNs) [26], which place pri-
ors on network weights, our evidential-based approach sets priors
directly over the likelihood function. This methodology achieves a
more computationally efficient uncertainty quantification.

Network traffic data frequently follows Gaussian distributions
during standard analysis scenarios [16]. Thus, we consider the
uncertainty representations z extracted from the preceding au-
toencoder, which encapsulates the evidential information about
normal network traffic, to conform to independent homogeneous
distributions from a Gaussian distribution. These distributions are
characterized by their mean and variance (𝜇, 𝜎2). These parameters
to be quantified, 𝜇 and 𝜎2, are intrinsically linked to the model un-
certainty that is the focus of our investigation [1]. To estimate these
parameters, we employ a hierarchical Bayesian approach. Specifi-
cally, we utilize a Gaussian prior to estimate the mean value and
place an Inverse-Gamma prior on the variance. This choice of priors
is motivated by their conjugate relationship with the Gaussian like-
lihood, facilitating closed-form posterior updates. The hierarchical
model can be expressed as follows:

z ∼ N(𝜇, 𝜎2) 𝜇 ∼ N(𝛾, 𝜎2𝑣−1) 𝜎2 ∼ Γ−1 (𝛼, 𝛽), (1)

where Γ(·) denotes the Gamma function, 𝛾 represents the uncer-
tainty space to be estimated, 𝑣 > 0, 𝛼 > 1 and 𝛽 > 0. We aim to
estimate a posterior distribution 𝑞(𝜇, 𝜎2 |z). Following the approach
described in work [6], we employ a factorization of the estimated
distribution such that 𝑞(𝜇, 𝜎2) = 𝑞(𝜇)𝑞(𝜎2). This factorization al-
lows for a tractable approximation of the posterior distribution.
Our approximation takes the form of the Gaussian conjugate prior,
specifically the Normal Inverse-Gamma (NIG) distribution:

𝑝 ({𝜇, 𝜎2} | Ω) = 𝛽𝛼
√
𝑣

Γ(𝛼)
√
2𝜋𝜎2

(
1
𝜎2

)𝛼+1
exp

{
−2𝛽 + 𝑣 (𝛾 − 𝜇)2

2𝜎2

}
,

(2)
where Ω = {𝛾, 𝑣, 𝛼, 𝛽} denotes the set of uncertainty parameters
we aim to estimate. Given a NIG distribution parameterized by Ω,
we can compute the uncertainty space and model uncertainty:

E[𝜇] = 𝛾︸    ︷︷    ︸
uncertainty space

Var[𝜇] = 𝛽

𝑣 (𝛼 − 1)︸                  ︷︷                  ︸
model uncertainty

. (3)

This mathematical formulation delineates the theoretical frame-
work underpinning our approach to uncertainty quantification. The
evidential learning paradigm we have introduced essentially con-
stitutes an uncertainty estimation methodology based on the likeli-
hood function. This approach involves training a neural network
to output the hyperparameters for fitting an evidential distribution.

Next, we outline our method for obtaining evidential parame-
ters. Our training process is designed to optimize a dual-objective
function that simultaneously addresses two critical aspects: (i) in-
creasing model evidence to support the training samples, which
in this context represent normal network traffic patterns, and (ii)
reducing evidence when uncertainty space exhibits inconsistencies
or inaccuracies. Objective (i) can be conceptualized as a mechanism
for adapting our data to the evidential model, while objective (ii)
serves to enforce a prior that mitigates inaccurate evidence and
amplifies uncertainty where appropriate.

Objective (i): Maximizing the Normal Evidence. In accordance
with Bayesian probability theory, the “model evidence” is defined
as the likelihood of an observation, given the evidential distribu-
tion parameters Ω. This is computed by marginalizing over the
likelihood parameters (𝜇, 𝜎2):

𝑝 (z | Ω) =
∫ ∞

𝜎2=0

∫ ∞

𝜇=−∞
𝑝

(
z | 𝜇, 𝜎2

)
𝑝

(
𝜇, 𝜎2 | Ω

)
d𝜇d𝜎2 . (4)

The direct fitting of the evidential model parameters Ω to this like-
lihood distribution presents significant computational challenges.
However, by applying a Normal Inverse-Gamma (NIG) evidential
prior to the Gaussian likelihood function, we can derive an analyti-
cal solution, as demonstrated in work [6]:

𝑝 (z | Ω) = St
(
z;𝛾,

𝛽 (1 + 𝑣)
𝑣𝛼

, 2𝛼
)
, (5)

where St(·; 𝜇St, 𝜎2St, 𝑣St) denotes the Student’s t-distribution evalu-
ated at location parameter 𝜇St, scale parameter 𝜎2St, and degrees
of freedom 𝑣St. To optimize the model’s representation of normal
network traffic, we maximize the logarithm of the model evidence,
which is equivalent to minimizing its negative. This objective guides
the uncertainty parameter heads to output the parameters of a NIG
distribution that best fits the distribution of normal network traffic.
Formally, we define the training objective LNLL for maximizing
the normal evidence as:

LNLL =
1
2
log

(𝜋
𝑣

)
− 𝛼 log(𝜔) + log

©«
Γ(𝛼)

Γ
(
𝛼 + 1

2

) ª®®¬
+
(
𝛼 + 1

2

)
log

(
(z − 𝛾)2𝑣 + 𝜔

)
,

(6)

where 𝜔 = 2𝛽 (1 + 𝑣).
Objective (ii): Minimizing Evidence on Errors. In addition to
maximizing the evidence for normal patterns, we incorporate a
regularization term that imposes a high uncertainty prior to penal-
ize incorrect evidence in the uncertainty space. The fundamental
principle underlying this regularization is that it should attenuate
the weight of evidence where the uncertainty space deviates sig-
nificantly from the true evidence while having minimal impact on
evidence predictions that closely align with the instructive evidence
z. To achieve this, we formulate an evidence regularizer [6] LR as:

LR = |z − 𝛾 | · (2𝑣 + 𝛼). (7)

3.3.3 Training. Our training loss function comprises three princi-
pal components: LNLL, LR, and LRec:

L = LRec · 𝜆Rec + LNLL · 𝜆NLL + LR · 𝜆R, (8)

where 𝜆· is the hyperparameter to control the contribution of each
component. LRec is the reconstruction loss for the autoencoder:.

LRec = | |x − x̂| |1, (9)

where | | · | |1 denotes the L1 norm. The inclusion of this term ensures
the preservation of the autoencoder’s fundamental reconstruction
capability, enabling the generation of meaningful latent representa-
tions. These representations serve as effective evidence instructors
for the subsequent uncertainty quantification.
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Table 1: Performance comparisons (%) for undrifted anomaly detection on the DataCon2020, CIC-IDS2017, and USTC-TFC2016
datasets. The best results are in bold, and the runner-up results are underlined.

Model DataCon2020 CIC-IDS2017 USTC-TFC2016

AUC ACC F1 AUC ACC F1 AUC ACC F1

PaDim 61.01±0.5 55.07±0.2 67.23±0.2 57.74±0.4 55.06±0.1 68.16±0.1 98.79±0.0 96.93±0.1 96.85±0.1
DFM 83.03±0.3 78.67±0.3 78.85±0.3 69.91±0.2 63.89±0.3 66.87±0.1 94.94±0.3 93.03±0.3 92.63±0.3

DFKDE 72.85±0.5 64.37±0.3 71.86±0.2 67.67±0.6 63.62±0.3 68.61±0.2 91.63±2.4 93.38±0.2 93.79±0.2
Fastflow 69.98±0.5 63.93±0.3 71.65±0.3 78.25±0.3 74.82±0.4 76.39±0.4 99.14±0.0 95.60±0.2 95.42±0.2
Cflow 68.69±1.6 64.14±1.0 72.40±0.8 66.42±0.9 69.46±0.6 69.41±0.5 97.22±0.2 96.76±0.2 96.68±0.2
STFPM 82.37±0.6 80.44±2.1 80.93±1.7 85.89±1.7 80.00±2.1 81.50±1.1 91.63±2.4 89.02±1.3 89.71±1.3
ReverDis 74.53±2.4 68.80±3.1 75.30±1.1 82.22±0.3 77.87±0.4 76.62±0.4 98.05±0.5 95.21±0.9 95.07±0.9
MMR 80.60±2.1 78.85±2.1 79.64±1.3 85.87±1.2 74.36±1.1 74.40±1.0 99.44±0.0 96.15±0.2 96.04±0.2

GANomaly 81.50±1.0 79.40±2.1 79.95±1.6 82.75±4.7 80.85±1.7 81.21±0.9 95.36±1.0 91.27±2.9 91.07±3.2
ARCADE 81.98±4.1 81.48±2.0 80.31±3.4 84.85±2.6 80.15±1.6 82.78±1.0 88.62±2.2 93.13±0.1 93.57±0.1
MFAD 83.16±1.9 76.28±2.4 78.59±1.1 86.02±0.8 81.66±1.9 83.67±1.7 99.73±0.0 97.45±0.4 97.43±0.4
Trident 63.89±0.5 73.67±0.3 78.37±0.3 82.99±0.1 77.42±0.2 75.17±0.2 96.19±0.2 89.86±0.3 89.47±0.3

UnDiff 86.93±0.3 83.16±0.2 82.78±0.2 88.88±0.4 83.31±0.4 83.72±0.4 99.90±0.0 99.47±0.2 99.47±0.2

3.3.4 Inference. The anomaly detection process fundamentally re-
lies on an anomaly score to quantify the degree of deviation from
normality. Given that our model is trained exclusively on normal
network traffic, the proposed UnDiff naturally assigns low uncer-
tainty to patterns consistent with normal network behavior. Our
approach is motivated by the well-established principle that there
exists a distributional divergence between normal and anomalous
network traffic, encompassing both undrifted and drifted anom-
alies [8, 21, 54]. Leveraging this insight, we adopt an inter-sample
differences method, utilizing model uncertainty as a direct proxy
for anomaly scoring. This approach is underpinned by the widely
accepted notion in uncertainty learning that deviant samples in-
herently induce higher model uncertainty [22]. As depicted in Fig-
ure 2(b), our method yields an effective and computationally effi-
cient uncertainty-inspired anomaly score. This score is character-
ized by its ability to generate high uncertainty values for anomalous
samples (i.e., out-of-distribution instances relative to the training
set) while maintaining low uncertainty for normal samples (i.e.,
in-distribution instances relative to the training set). In contrast to
traditional reconstruction-based anomaly quantification methods,
which we categorize as intra-sample difference approaches, Un-
Diff capitalizes on the intrinsic distributional divergence between
normal and anomalous network traffic. Formally, we define our
anomaly score as follows:

Anomaly Score = Var[𝜇] = 𝛽

𝑣 (𝛼 − 1) . (10)

4 Experiments
4.1 Experimental Setting
Dataset.We use three publicly available network traffic anomaly
detection datasets for evaluation: (i) DataCon2020 [10] is an en-
crypted network traffic dataset comprising normal and malicious
traffic, with the latter consisting of encrypted malware commu-
nications; (ii) CIC-IDS2017 [38] is a network intrusion detection
dataset that includes seven common attacks; (iii) USTC-TFC2016
[42] is malware traffic detection dataset with malicious traffic from
public sources and normal traffic from eight application types. For
consistent evaluation, we randomly sample 10,000 normal network

flows for training and 5,000 normal plus 5,000 anomalous flows for
testing across all datasets.
Baselines.We evaluate UnDiff with 12 state-of-the-art baselines,
categorized into two groups as follows: (i) Network Traffic Anom-
aly Detection: GANomaly [3], ARCADE [34], MFAD [54], and Tri-
dent [53]; (ii) Other Advanced Anomaly Detection: PaDim [11], DFM
[2],DFKDE [4], FastFlow [47],CFlow [19], STFPM [40], ReverDis [12],
and MMR [51].
Evaluation Metrics. In alignment with recent models in network
traffic anomaly detection [34, 54], we employ three commonly
used metrics: AUC, Accuracy (ACC), and F1-Score (F1). Practical
detection accuracy is defined as the performance achieved under
the optimal F1-Score value.
Drifted Anomaly. We assess model’s robustness to anomaly drift
by conducting cross-dataset evaluations. Specifically, we train one
model on one dataset and evaluate this model’s performance on
anomalous samples from other datasets. This approach allows us to
investigate model’s generalization capability and resilience to po-
tential concept shifts in network traffic, thereby assessing model’s
efficacy in detecting drifted anomalies in real-world environments.
Implementation Details. All experiments are conducted on an
NVIDIA GeForce RTX 3090 GPU. We use the Adam optimizer with
learning rates of 1𝑒−4, 1𝑒−3, 1𝑒−6 for DataCon2020, CIC-IDS2017,
and USTC-TFC2016, respectively. Loss coefficient (𝜆Rec, 𝜆NLL, 𝜆R)
are set as (1, 1𝑒−2, 1𝑒−4), (1, 5𝑒−2, 5𝑒−5) and (1, 1, 1𝑒−2), while the
low-pass filter uses a cutoff radius of 5. Training proceeds with a
batch size of 128 for a maximum of 50 epochs, with early stopping
implemented to mitigate overfitting. To ensure statistical robust-
ness, we perform five independent runs with different random
seeds, reporting mean results with standard deviations. To facili-
tate reproducibility, the model code for our UnDiff is available at
https://github.com/ikun0124/UnDiff and will be made public.

4.2 Anomaly Detection on Benchmark
To assess UnDiff’s efficacy in typical anomaly traffic detection
scenarios (i.e., undrifted anomalies), we conducted a comprehen-
sive comparison of our model against 12 competitive baselines on
three datasets. The results, as presented in Table 1, demonstrate
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Table 2: Performance comparisons (%) for drifted anomaly detection on the DataCon2020, CIC-IDS2017, and USTC-TFC2016
datasets. The abbreviations are explained as follows: D: DataCon2020, I: CIC-IDS2017, and U: USTC-TFC2016.

Model D->I D->U I->D I->U U->D U->I
AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

GANomaly 50.73 50.99 66.86 60.96 75.82 79.68 56.58 72.35 75.76 74.92 72.32 77.49 90.30 90.70 91.25 96.01 88.67 87.95
ARCADE 49.99 49.99 66.66 57.87 74.83 78.74 67.47 79.24 80.94 49.60 59.74 69.60 97.87 93.44 93.84 88.61 90.67 91.44
MFAD 62.28 51.09 67.01 79.50 72.76 77.90 77.90 70.56 74.60 82.18 75.84 78.02 98.20 95.27 95.43 98.62 93.92 94.19
Trident 55.11 49.90 66.66 66.08 78.99 81.77 51.20 57.90 70.07 67.47 66.24 72.57 97.47 98.28 98.31 98.83 97.57 97.62

UnDiff-AE 64.48 70.57 77.10 71.08 76.97 80.73 81.48 79.21 80.47 61.88 62.27 71.91 99.57 98.92 98.92 98.75 92.80 93.27
UnDiff 84.10 76.14 80.46 96.08 87.95 88.66 93.70 88.65 88.57 91.18 86.43 86.69 99.83 99.59 99.59 99.76 98.07 98.07

Uncertainty Uncertainty Uncertainty

D
en

si
ty

DataCon2020 CIC-IDS2017 USTC-TFC2016

AnomalyNormal

D
en

si
ty

DataCon2020 CIC-IDS2017 USTC-TFC2016

Uncertainty Uncertainty Uncertainty

Normal Anomaly

DataCon2020 CIC-IDS2017 USTC-TFC2016

D
en

si
ty

Uncertainty Uncertainty Uncertainty

Normal Anomaly

D
en

si
ty

Anomaly Scores

GANomaly

ARCADE

MFAD

Trident

UnDiff

Normal (A)

Undrifted
Anomaly (A)

Drifted 
Anomaly (C)

Drifted 
Anomaly (B)

A:“D” B:“I” C:“U” A:“I” B:“D” C:“U” A:“U” B:“D” C:“I”

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Normal
Anomaly Normal Anomaly

Figure 3: Statistics of the uncertainty-based anomaly scores
for UnDiff under the undrifted anomaly scenario.

that our model consistently outperforms baselines across all three
datasets. Notably, on the DataCon2020 and CIC-IDS2017 datasets,
UnDiff exhibits significant performance improvements over the
best-performing baseline MFAD, with enhancements of 3.7% and
2.8% in AUC, respectively. The underlying strength of our method
lies in its innovative utilization of uncertainty measures to directly
quantify inter-sample differences, thereby facilitating more accu-
rate discrimination of anomalous network traffic patterns.

While statistics-basedmethods such as PaDim, DFM, andDFKDE,
as well as normalizing flow-based approaches like FastFlow and
CFlow, attempt to compute distribution deviations by exploiting
inter-sample differences, their comparative spaces lack the dis-
criminative power of our uncertainty space. Our approach, built
upon the informative reconstruction of latent variables and guided
by evidential learning, constructs a more robust and discerning
comparative framework. Moreover, distillation-based methods in
anomaly detection, including STFPM, ReverDis, and MMR, are con-
strained by the limitation in effective feature extraction. In contrast,
approaches specific to anomaly network traffic detection, while not
requiring additional feature extractors, quantify anomalies through
intra-sample reconstruction differences. However, these methods,
including GANomaly, ARCADE, MFAD, and Trident, suffer from
the “identical shortcut” issue, which may significantly compromise
the intra-sample differences of anomalies, leading to suboptimal
performance. Our uncertainty-inspired framework addresses these
limitations by effectively leveraging distributional differences be-
tween normal and anomalous samples. By quantifying anomalies
from an inter-sample differences perspective, UnDiff provides a
more nuanced and robust approach to anomaly detection.

To further corroborate the feasibility of our UnDiff framework,
we present a detailed analysis of the anomaly score distributions in
Figure 3. The graphical representation reveals a marked bimodal
distribution, with a clear separation between the scores associated
with normal and anomalous samples. This pronounced divergence
in score distributions provides compelling evidence for the discrim-
inative power of our uncertainty-inspired anomaly metric. The
clear detachment between normal and anomalous samples also
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Figure 4: Anomaly score distribution for Trident, UnDiff-AE,
and UnDiff under the anomaly drift scenario.

underscores the method’s ability to generate highly informative in-
dicators, facilitating more accurate and reliable anomaly detection.

4.3 Drifted Anomaly Detection
To assess the efficacy in addressing drifted anomalies, we compare
our UnDiff with state-of-the-art network traffic anomaly detection
baselines and a variant of our method – UnDiff-AE, which employs
a pure auto-encoder architecture without uncertainty learning. As
evidenced in Table 2, these approaches have suboptimal perfor-
mance, particularly in the drifted experiments from DataCon2020
(D) to CIC-IDS2017 (I), D to USTC-TFC2016 (U), I to D, and I to
U. These empirical observations highlight the critical necessity
for robust drifted anomaly detection methodologies. The primary
limitation of these baselines stems from their reliance on an intra-
sample difference paradigm, which is inherently susceptible to the
“identical shortcut” issue prevalent in reconstruction-based mod-
els. Therefore, the divergence in anomaly scores between normal
and anomalous samples is suppressed and obfuscated. We visu-
alize the detailed anomaly scores for Trident and UnDiff-AE in
Figure 4 to elucidate this phenomenon. The anomaly score distri-
bution for Trident exhibits significant overlap between normal and
anomalous samples, with anomalous samples occasionally scoring
lower than normal samples. This observation indicates that the
“identical shortcut” issue profoundly compromises the efficacy of
intra-sample differences in detecting drifted anomalies. In contrast,
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Figure 5: The t-SNE visualization comparison between intra-
sample and inter-sample differences.

UnDiff achieves apparent distinction in the distribution between
normal and drifted anomaly samples, thereby validating the ef-
fectiveness of our inter-sample differences approach. Notably, the
comparative analysis with UnDiff-AE shows that the substantial im-
provement in UnDiff’s performance is predominantly attributable
to the uncertainty-inspired inter-sample differences rather than the
fundamental auto-encoder architecture.

4.4 Qualitative Study
We now elucidate the underlying mechanisms contributing to Un-
Diff’s enhanced performance by two 𝑡-SNE visualizations. As il-
lustrated in Figure 5, we observe a degree of confusion between
the pre- and post-reconstruction embeddings of anomalous sam-
ples on Trident, manifested as certain overlaps and approximate
profiles with minimal distance. We posit that this phenomenon
arises from the “identical shortcut” issue, an inherent limitation
in reconstruction-based approaches. This limitation leads to well-
reconstructed representations even for anomalous samples, a phe-
nomenon that contradicts the fundamental detection motivation of
reconstruction methods. Consequently, this results in indistinguish-
able intra-sample differences between normal and anomalous traf-
fic patterns, compromising the efficacy of traditional approaches.
In contrast, UnDiff is based on a novel inter-sample differences
perspective, effectively leveraging the axiom that anomalous sam-
ples inherently deviate from normal samples in the feature space.
The representation within our uncertainty space demonstrates the
feasibility and effectiveness of uncertainty-inspired modeling and
detection. This approach makes the discrimination by exploiting
inter-sample differences, thereby overcoming the limitations inher-
ent in intra-sample comparison methods.

4.5 Ablation Study
To evaluate the contributions of each component in our UnDiff, we
conduct an ablation study comprising four variants. These variants
are constructed by removing one of the key components in UnDiff:
the reconstruction loss LRec (w/o LRec), the regularization loss LR

(w/o LR), the uncertainty-based anomaly score (w/o AS), and both
the uncertainty-based modeling and anomaly score (w/o T&AS). As
illustrated in Table 3, the removal of LRec results in substantial per-
formance degradation, underscoring the critical role of reconstruc-
tion loss in ensuring a refined representation of normal network
traffic. Furthermore, we observe a notable decline in performance
upon removal of LR, indicating its efficacy as a regularization con-
straint in preventing the formation of erroneous evidence spaces
during the uncertainty quantification process. While removing the

Table 3: Ablation studies for drifted and undrifted anomaly
detection (AUC). The gray color denotes undrifted detection.

Variant DataCon2020 CIC-IDS2017 USTC-TFC2016
D I U D I U D I U

w/o LRec 83.44 61.79 80.26 78.46 76.22 59.41 98.95 80.97 98.25
w/o LR 84.80 71.48 72.50 85.31 86.80 81.12 99.55 99.39 99.78
w/o AS 85.66 82.52 83.25 83.28 87.67 86.15 99.74 98.81 99.84

w/o T&AS 85.55 64.48 71.08 81.48 86.02 61.88 99.51 98.75 99.71
UnDiff 86.93 84.10 96.08 93.70 88.88 91.18 99.83 99.76 99.90

Table 4: Overhead comparison for inference.
GANomaly ARCADE MFAD Trident UnDiff

MACs (G) 0.98 0.82 0.99 0.03 0.25
#Paras (M) 9.66 6.7 10.07 27.61 2.55

uncertainty-based anomaly score (w/o AS) and both uncertainty-
based modeling and anomaly score (w/o T&AS) resulted in per-
formance degradation, our complete UnDiff model demonstrates
optimal performance in drifted anomaly detection. This suggests
that the uncertainty-based modeling and inter-sample difference de-
tection components effectively leverage prior differences between
normal and anomalous samples, mitigating the inherent limitations
of purely reconstruction-based methods.

4.6 Overhead Evaluation
We conduct an analysis of model efficiency, focusing on multiply-
accumulate operations per second (MACs) and the number of model
parameters (#Paras) during inference. The results of this analysis
are summarized in Table 4. Our UnDiff demonstrates excellent
performance with favorable computational overhead compared to
alternative baselines. This efficiency can be attributed to strategic
design choices, such as the multi-channel image representation, a
low-parameter evidence extractor, and a set of concise uncertainty
parameter heads. Notably, UnDiff balances performance and compu-
tational requirements, rendering it particularly suitable for practical
deployment in network traffic anomaly detection scenarios.

5 Conclusion
This study presents a pioneering approach to network traffic anom-
aly detection by developing an inter-sample differences method
based on uncertainty. This novel methodology directly addresses
the challenges of anomaly detection while circumventing the “iden-
tical shortcut” issue inherent in existing methods that rely on intra-
sample differences between pre- and post-reconstruction repre-
sentations. Our proposed UnDiff effectively leverages the prior
knowledge that anomalous samples inherently deviate from normal
samples. This enables learning a more discriminative uncertainty
space, facilitating optimal detection performance. Comprehensive
empirical evaluations across three benchmark datasets demonstrate
UnDiff’s superior performance in detecting undrifted and drifted
anomalies with minimal additional computational overhead.
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