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Abstract

Understanding and predicting the popularity of online User-
Generated Content (UGC) is critical for various social and
recommendation systems. Existing efforts have focused on
extracting predictive features and using pre-trained deep
models to learn and fuse multimodal UGC representations.
However, the dissemination of social UGCs is not an iso-
lated process in social network; rather, it is influenced by
contextual relevant UGCs and various exogenous factors, in-
cluding social ties, trends, user interests, and platform al-
gorithms. In this work, we propose a retrieval-based frame-
work to enhance the popularity prediction of multimodal
UGC:s. Our framework extends beyond a simple semantic re-
trieval, incorporating a meta retrieval strategy that queries a
diverse set of relevant UGCs by considering multimodal con-
tent semantics, and metadata from user and post. Moreover,
to eliminate irrelevant and noisy UGCs in retrieval, we in-
troduce a new measure called Relative Retrieval Contribu-
tion to Prediction (RRCP), which selectively refines the re-
trieved UGCs. We then aggregate the contextual UGC knowl-
edge using vision-language graph neural networks, and fuse
them with an RRCP-Attention-based prediction network. Ex-
tensive experiments on three large-scale social media datasets
demonstrate significant improvements ranging from 26.68%
to 48.19% across all metrics compared to strong baselines.

1 Introduction

Social media popularity prediction (SMPP) is a critical task
across many domains, such as social networking services
(Hong, Dan, and Davison 2011) and online marketing (Ag-
grawal et al. 2017; Gu et al. 2024), benefiting applica-
tions ranging from information propagation and rumor de-
tection (Moniz and Torgo 2019) to social recommendation
and network traffic management (Zhang et al. 2021; Cheng
et al. 2022). At its core, SMPP research seeks to understand
what factors influence the diffusion of user-generated con-
tent (UGC) among users and develop prediction models that
can accurately “foresee” the future popularity of UGCs.
Early efforts in SMPP focused on mining predictive pat-
terns from UGC content and social context, exploring vari-
ous UGC features and building machine learning models for
the prediction (Tatar et al. 2014; Liu et al. 2022; Zhou et al.

*Corresponding Author
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

932

Prior Arts | UGC

[ Model | Popularity ]

Vanilla

Retrieval  ([ygC | Model | Popularity ]
Meta Selective

SKAPP Retriever m

—»[ Model |»{ Popularity ]

RRCP=0.18 -0.70

-0.46 0.37

-2.54 0.07 0.0 0.49

5
dilts e B g"i’ig

Retfieving UGCs selectively

Query
1.8 1 37 42 )
. EB o w 3=5 e w g Prior Arts
g = %] — (2] = 2! === vVanilla Retrieval
—] = —] = —]
|} |} |}
P SMPD Instagram I Proposed SKAPP

Figure 1: Top: Model comparison between non-retrieval,
vanilla retrieval, and our proposed selective retrieval. Mid-
dle: Case study of selectively retrieving UGCs from the In-
stagram dataset. Bottom: Preliminary experiments.

2021). For example, visual features such as color patches,
gradient, and objects in images, alongside social features
like follower count and historical UGC popularity, were
found to be effective in (Khosla, Das Sarma, and Hamid
2014). Another research direction employed statistical mod-
els to simulate UGC diffusion processes (Zhao et al. 2015;
Mishra, Rizoiu, and Xie 2016), including survival analysis
and point processes. More recent attention has been paid
to UGC representation learning through neural networks,
which automatically capture complex UGC patterns and in-
tegrate multiple data modalities into a unified model, lead-
ing to state-of-the-art prediction performance (Cheung and
Lam 2022; Cheng et al. 2024; Hsu et al. 2023; Chen et al.
2023; Xu et al. 2023). For example, the vision-language
Transformers have been used in (Cheung and Lam 2022) to
learn visual and textual representations of UGC content; and
the hierarchical variational auto-encoders have been used in
(Xie, Zhu, and Chen 2023) to model UGC’s internal noises
and external uncertainties.

A major challenge in SMPP lies in identifying the in-
trinsic quality and diffusion patterns of UGCs that sig-
nificantly impact future popularity. However, many exist-



ing approaches treat UGC prediction as an isolated pro-
cess, focusing heavily on semantic learning while overlook-
ing the interconnected nature of UGCs. These connections,
whether explicit or implicit, often arise from users’ social
ties and shared community interests (Ferrara, Interdonato,
and Tagarelli 2014). Furthermore, UGC popularity is not
solely driven by social relations, but is equally influenced
by social exposures, such as trends, events, and personalized
recommendations (Abbar, Castillo, and Sanfilippo 2018).

To capture the social relations and UGC-User interac-
tions, a plethora of methods have designed user and dif-
fusion graphs, leveraging graph neural networks (GNNs)
(Cao et al. 2020; Ji et al. 2023b) to learn structural rela-
tionships between UGCs or users. However, these efforts
are limited to “peaking strategy”-based prediction at where
the early diffusion patterns are observed, and require users’
social networks that may not always be available or func-
tional for cold-start users. Retrieval augmentation models,
as an alternative way of using contextual knowledge to en-
hance generation and prediction, have attracted a lot of atten-
tion across various domains, including large language mod-
els (Gao et al. 2023; Long et al. 2024), visual question an-
swering (Lin et al. 2024), and popularity prediction (Ji et al.
2023a; Zhong et al. 2024).

Retrieval-augmented approach meets the goal of model-
ing UGC relations and interactions, with a focus on UGC
itself and its semantic and social contexts. Despite its ef-
fectiveness in enhancing contextual learning, we found that
a retrieval-based framework for SMPP task encounters the
following significant challenges:

* A simple retrieval strategy that relies solely on semantic
similarity often fail to reflect the overall contextual infor-
mation of complex social UGCs. For example, when the
query is only concerned with the UGC photo, we retrieve
many UGCs having similar photos — but their dynamics
can be very different from the query in users and topics —
neglecting other potentially relevant UGCs.

* Not all retrieved UGCs may be truly relevant to the query
UGC. The quality of the retrieval results heavily depends
on the design of the query and the retrieval algorithm,
which are not always reliable or optimal (Cuconasu et al.
2024) — as a consequence, inevitably introducing noises
and irrelevant UGCs that could be harmful to the predic-
tion. This is especially the case for social UGCs that have
varied quality and informal content.

To address these challenges, we present SKAPP, a Selec-
tive retrieval Knowledge Augmentation framework for mul-
timodal social media Popularity Prediction. Beyond a sim-
ple semantic retrieval strategy, we propose a meta retriever
that considers not only multimodal UGC semantics, includ-
ing vision-enhanced language descriptions, but also the so-
cial contexts of UGCs by incorporating metadata informa-
tion, such as user and post dynamics. Inspired by conditional
cross-mutual information (Fernandes et al. 2021; Wang et al.
2023), we devise a selective refiner based on a new mea-
sure termed Relative Retrieval Contribution to Prediction
(RRCP). The selective refiner quantifies the gains in predic-
tion of the retrieved UGCs conditioned on the query, filter-
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ing out potentially irrelevant and noisy UGCs to the predic-
tion. Moreover, to effectively aggregate multimodal knowl-
edge from the selected UGCs, we introduce vision-language
GNNs for UGC contextual learning, coupled with an RRCP-
Attention-based prediction network for multimodal knowl-
edge fusion and final UGC popularity prediction. A com-
parison between traditional model, vanilla retrieval, and our
proposed SKAPP is sketched in Figure 1.

Overall, we show that the meta retriever, selective re-
finer, and prediction network work together to achieve uni-
versal performance improvements, with gains ranging from
26.68% to 48.19% across all metrics on three large-scale
datasets compared to cutting-edge baselines. Further ab-
lation studies validate the effectiveness and robustness of
our proposed SKAPP model. Source codes and datasets are
available at https://github.com/YifanZhang-git/SKAPP.

2 Preliminaries

Problem Definition Given a set of N multimodal user-
generated content (UGC), denoted as C = {¢1,c¢a,...,¢N},
the problem target is to predict their future popularity P =
{p1,p2,...,pn}, e.g., the number of likes or views. Each
UGC ¢; is represented by a triplet (c?, ¢f, ¢I™), where ¢V cor-
responds to the visual modality, c! to the textual modality,
and c}* to the metadata modality. The metadata modality
includes user and post information, such as the number of
friends, UGC tags, posting time and location.

Retrieval-Augmented Generation Retrieval-augmented
generation (RAG) is a technique that combines the strengths
of information retrieval systems and generative models (Gao
et al. 2023). It has emerged as a way of to enhance the per-
formance of large language models (LLMs) by integrating
external knowledge into the response generation. The com-
mon flow of RAGs involves first searching and retrieving rel-
evant knowledge from a large database based on the query,
followed by fusing the retrieved knowledge with the input to
enhance learning and generation. Despite its effectiveness,
RAG faces several limitations, including the irrelevance of
retrieved knowledge and the noise in retrieval (Cuconasu
et al. 2024; Kevin Wu 2024). Motivated by RAG and also its
limitations, we aim to build a retrieval-based SMPP frame-
work that can retrieve the most relevant UGCs while elimi-
nating the irrelevant and noisy UGCs during retrieval.

3 Methodology

Overview SKAPP model consists of three key mod-
ules: the meta retriever, selective refiner, and knowledge-
augmented prediction network. The meta retriever is de-
signed to identify a diverse set of relevant UGCs by con-
sidering multimodal UGC content and metadata. The selec-
tive refiner measures the retrieved UGCs based on their rel-
ative prediction contributions, aiming to filter out irrelevant
and noisy UGCs. The prediction network employs vision-
language GNNs and an RRCP-Attention-based module for
better fusing the retrieved knowledge. The framework of
SKAPP is depicted in Figure 2.
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Figure 2: Framework of the proposed SKAPP model. The input is a social UGC and the output is its predicted future popularity.
(a) Meta Retriever constructs the UGC query by integrating multimodal UGC content semantics with the metadata information,
enabling the retrieval of a broader and more diverse set of potential relevant UGCs. (b) Selective Refiner employs a new
Relative Retrieval Contribution to Prediction (RRCP) measure to select UGCs that have positive gains in prediction, filtering
out irrelevant and noisy UGC:s. (c) Prediction Network leverages vision-language graph neural networks to aggregate contextual
knowledge from selected UGCs with an RRCP-Attention-based module for accurate social media popularity prediction.

Meta Retriever for Multimodal Social UGCs

Social UGCs are multimodal content created by social me-
dia users, whose behavior differs markedly from that of pro-
fessionals (Momeni, Cardie, and Diakopoulos 2015). These
UGCs often feature informal language, slang, and low-
quality visuals, and their dissemination is influenced by user
interests, social trends, and platform algorithms. The high
diversity and variability of social UGCs pose significant
challenges for effective retrieval. Beyond a simple content
retrieval strategy, we propose meta retriever, which consid-
ers not only the multimodal information, including visual
and language semantics, but also the multi-faceted nature of
social UGCs by incorporating contextual understanding of
the metadata information, such as user, posting time, tags,
and friends.

Multimodal UGC Query Construction Given a social
UGC ¢; as the retrieval query, we expect to retrieve the
most relevant UGCs from a knowledge base. The retrieved
UGC:s should express high semantic relevance to the query
and share similarities in user, post, social trend, and event
information that can be helpful for the prediction. Rely-
ing on unimodal information, such as visuals, may yield
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UGCs with matching images but divergent in other critical
aspects like user demographics or topic relevance — neglect-
ing many other potentially relevant UGCs. The query con-
struction process in meta retriever involves: (i) we first ex-
tract visual semantics from UGC’s visual modality, ¢, us-
ing a pre-trained image-to-text model (Li et al. 2022), which
generates a rich visual description; (ii) this visual descrip-
tion is integrated with the UGC’s textual content, c‘;; (iii)
then entities and actions are extracted from the combined
texts, thereby enriching the query with detailed content and
contextual information; (iv) the final query, ();, comprises
these enhanced textual descriptions with metadata such as
user Id, tags, and categories, ensuring a comprehensive and
contextually aware query for retrieval.

Meta Retrieval With the query (); prepared, containing
vision, language, and metadata information of UGC ¢;, we
proceed to retrieve relevant UGCs from a UGC knowledge
database D. We use the BM25 ranking function (Robertson
etal. 1995), a standard tool in information retrieval, to search
through D and rank UGCs based on their relevance to Q).
Specifically, we calculate a relevance score, RS(cl, D), to
assess the similarity between the query UGC ¢; and each



UGC cg? in the database:

(Ci,f7cff) : (/ﬁ + 1)

T
RS(c;,cP) = IDF(c; ;) -
(C Cj ) Z (C ,f) T(Ci,facj?f) +/€1

feQ;

ey

where &, is a BM25 hyperparameter, T'(c; ¢, ch) measures

the feature similarity between ¢; y and cj?f, and IDF(c; ) is
the inverse frequency of the feature ¢; y across UGCs. Since
retrieving UGCs differs from traditional document retrieval,
the term (1—b+b-|cF| /avedl) is simplified to 1. For similar-
ity measure T'(c;, 7, c?f), T (cq;,f, c?) equals 1 if ¢; y = c?,
otherwise 0. If ¢; r is a vector containing multiple values, we
use the Jaccard similarity defined as:

@

We note that the above intersection operation is feasible for
small-sized UGC knowledge databases, but it becomes in-
feasible for large databases due to the increased compu-
tation and reduced relevance of retrieved UGCs. To im-
prove the retrieval effectiveness for large databases, we mod-
ify the Jaccard similarity to focus only on exact matches
rather than intersections, ensuring the most relevant UGCs
are prioritized. The database size is determined by whether
we could still retrieve many valid UGCs when applying a
more strict measure. Our preliminary experiments also ver-
ified the efficiency and effectiveness of this approach. Us-
ing the calculated relevance scores, the top-/K most relevant
UGC:s are retrieved from the knowledge base D, denoted as

§ A— T ‘e T
Cl = {Ci,hCi,Qa"' 7Ci,K}'

Selective Retrieval

T (civf,cff) =|ci s N cff\/|ci’f U cff\.

Why we need selective retrieval? On the one hand, social
UGC:s they themselves are inherently containing more noise
and irrelevant content than professional, well-organized con-
tent. Their topics and diffusion dynamics are complex and
multi-faceted, influenced by both user preferences and com-
munity trends. The effectiveness of the retrieval is highly
dependent on the quality of the queries used. On the other
hand, unlike traditional retrieval strategies, our proposed
meta retriever expands the retrieving search space — when
we retrieve more diverse UGCs that could be useful, we also
retrieve UGCs potential of being noisy and irrelevant for the
prediction, resulting in suboptimal performance. Therefore,
while maintaining the breadth of the meta retriever, we are
interested in a way of selecting retrieved UGCs that distin-
guishes the useful UGCs. From this perspective, the final re-
trieved UGCs should not only be semantically and metadata-
wise similar to the target, but also contribute positively to the
prediction.

Inspired by conditional cross-mutual information (CXMI)
used in neural machine translation (Fernandes et al. 2021)
and large language models (Wang et al. 2023), we propose
to measure the prediction contribution of retrieved UGCs,
retaining those with high prediction contributions and filter-
ing out others. CXMI is a measure quantifies the influence
of context on model’s prediction, specifically how much in-
formation the context provides about prediction given input
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data. In our case, this concept can be abstracted to how much
the retrieved UGCs contribute to the prediction.

Derived from the CXMI, we design a new measure termed
Relative Retrieval Contribution to Prediction (RRCP), tai-
lored for social UGCs and the SMPP task. RRCP measures
the relative performance change with and without the re-
trieved contextual UGCs, conditioned on the query UGC.
Moreover, we use a directional contribution approach for es-
timating RRCP during inference. At last, the obtained RRCP
scores can also benefit the multimodal UGC fusion network,
which we will detail later.

Relative Retrieval Contribution to Prediction Given
any arbitrary UGC learning model, say M, we can predict
c;’s popularity by p; = M(c;), or by augmenting the input
with retrieval knowledge: p; = M/(c¢;, ) i) Cip € C7.Then
RRCP is quantified as the difference in prediction errors:

RRCP(Civc;’n,k) =L (pi,/\/l (Ci))_‘c(pivM<Ci’ C;k))v 3)

where p; is the ground-truth popularity of ¢; and L(-, -) can
be any loss function of interest. Here we use the mean abso-
lute error — a positive RRCP value indicates a beneficial con-
tribution from the retrieved UGC ¢ ;. Conversely, a negative
value indicates that ¢j ; is redundant or introducing noises,
and is therefore filtered out. For estimating the RRCP for a
held-out test set, a directional contribution approach is used
to quantify the relative prediction contribution. It hypothe-
sizes that a trained model can differentially learn from vari-
ous contextual UGCs and that the cumulative prediction gain
from an unfiltered set of retrieved UGCs is greater than a sin-
gle retrieved UGC. The RRCP for UGC ¢; ,, € C} queried
by c; is estimated by:

ﬁ(M(C“ C:),M(CZ)) - ‘C(M(Cu CZ),M(C“ C:,k)) “)

This direction contribution approach is simple and flexi-
ble, relieving the burden of training a specialized estima-
tion model with a different prediction target (Wang et al.
2023) (which expressiveness and scalability are limited and
we empirically found that it is infeasible for complex social
UGC:s), or conducting Monte Carlo simulations (Fernandes
et al. 2021). After obtaining the RRCP values for each ¢,
in C}, the selection of the retrieved UGCs is performed as:

C; ={ciy|ciy € C/,RRCP(c;,ciy) >0}, (5)

where 0 is the threshold for selection.

Perspective from Recall and Precision The meta re-
triever and selective refiner we proposed in this work are
analogous to the well-established metrics of Recall and Pre-
cision, respectively (refer to Figure 3). The meta retriever
is designed to retrieve broader and more diverse UGCs that
might be missed by simpler retrieval methods — increasing
the proportion of relevant UGCs that were retrieved, i.e.,
optimizing Recall. On the other hand, the selective refiner
focuses on refining the pool of retrieved UGCs by their con-
tributions to the prediction, akin to optimizing Precision —
increasing the proportion of relevant UGCs among all re-
trieved ones. This ensures the retrieval process not only cap-
tures a wide range of potentially useful UGCs but also main-
tains high relevance and utility in its outcomes.
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Knowledge-Augmented Prediction Network

Now we have obtained the selected UGCs C'; that relevant to
the query c; and have prediction contributions quantified by
the RRCP. Here we introduce vision-language GNNs based
on GraphAdapter (Li et al. 2024) and an RRCP-Attention-
based prediction network. We first model the visual and tex-
tual modalities of UGCs via a vision GNN and a language
GNN, respectively, treating UGCs as nodes and their rela-
tions as edges. By using a graph structure, the contextual
knowledge of the query UGC can be effectively aggregated
within the visual or language graph. Then a multimodal fu-
sion module based on the RRCP measure attentively aggre-
gates the vision and language knowledge from two graphs.
At last, the fused knowledge is fed into fully-connected (FC)
layers for the final popularity prediction.

Vision-Language Graph Neural Networks First, two
pre-trained vision and language encoders are used to ex-
tract each UGC’s visual v and textual t embeddings. The
vision graph is defined as G, = (N,,&,), with nodes
Ny = {1 < i < |Cf| + 1} being the set of all
UGC nodes including the query and all selected UGCs, and
Ey = {ef; | 1 < |Cf[+ 1,0 < j < |CF| + 1} is the
set of edges. For each node c}, its attribute is the corre-
sponding visual embedding v;. The edge value is defined
as the cosine similarity between the visual embeddings of
two nodes: e ; = (v; - v;)/([[vill[|v;l]). A similar structure
is used for the textual graph G; = (N, &;). Both graphs
reinsert the query node ¢! to enhance the representation
learning of the UGC interactions, with node correlations as
edge values. Afterwards, two graph convolution networks
are used to obtain visual Z} = V-GNN(¢;, C?) and textual
Z! = T-GNN(c;, C?) representations of the UGCs.

RRCP-Attention-based Fusion & Prediction Instead of
a simple pooling or concatenation, we make use of the previ-
ously obtained RRCP values with an attention mechanism to
fuse the learned visual and textual representations, applying
two levels of weighted knowledge aggregation:

Z;,U = Attn([RRCP(Civc;‘,k) : Z;)]i€[1,|CfH)>Z71;) € Z;}> (6)
z; , = Atn([RRCP(c;, ¢f ) - Ziliey,jc0)) 21 € Zi. (7)
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Dataset ICIP SMPD Instagram
# UGCs 20,337 305,613 297,865
# Users 17,302 38,312 33,935
avg. UGC Popularity  200.78 493.14 4,694.26
avg. Text Length 27.68 91.75 44278

Table 1: Data Statistics

At last, FC layers are used to predict the UGC popularity
and mean squared error is used as the optimization loss:

N

% Z(Pz —pi)>

i=1

pi = FC(Z;’D & Z;’t)7 Lioss = (3)

4 Experiments

We evaluate the proposed SKAPP model for multimodal
SMPP task against state-of-the-arts methods. Our exper-
iments span three social media UGC datasets, compare
eleven strong baselines, and include ablation studies, param-
eter and complexity analyses, and robustness.

Datasets Three real-world social media datasets compris-
ing multimodal UGCs: ICIP (Ortis, Farinella, and Battiato
2019), SMPD (Wu et al. 2023), and Instagram (Kim et al.
2020). Table 1 presents the basic statistics of datasets.

Baselines We compare SKAPP with the following eleven
baselines. They include three feature engineering-based ap-
proaches: SVR (Khosla, Das Sarma, and Hamid 2014),
HyFea (Lai, Zhang, and Zhang 2020), and MFTM (Hsu
et al. 2023); Six deep learning approaches: CLSTM (Ghosh
et al. 2016), HMMVED (Xie, Zhu, and Chen 2023), DLBA
(Brunelli, Viola, and Susto 2021), MASSL (Zhang et al.
2022), BLIP (Li et al. 2022), and CBAN (Cheung and
Lam 2022); Two retrieval-based approaches: NIPA (Ji et al.
2023a) and NMRA (Zhong et al. 2024).

Metrics Following existing works (Cappallo, Mensink,
and Snoek 2015; Wu et al. 2023), three standard metrics
were used: mean squared error (MSE), mean absolute error
(MAE), and Spearman’s rank correlation (SRC).

Implementation The dataset split ratio is 8:1:1 for train-
ing, validation, and test sets, respectively. We use PyTorch to
implement the SKAPP model, with Adam optimizer and an
initial learning rate of 1le~*. The number of retrieved UGCs
is 500, k1 of BM25 is 0.5, the threshold 6 of selective refiner
is 0, and the dimensions for embeddings v and t are 768.

Main Results

Table 2 presents the prediction performance of our model
compared to eleven baselines on the SMPP task. The fol-
lowing observations can be made: (i) Feature-engineering
models generally perform on par with deep learning mod-
els, although their performance can sharply decline in cer-
tain cases, as seen with the SVR model on the SMPD
dataset; (ii)) Among the six deep learning models, the per-
formance of CLSTM, HMMVED, and CBAN is higher than
that of the DLBA, MASSL, and BLIP; (iii) Of the two



Method Type ICIP SMPD Instagram
MSE MAE SRC MSE MAE SRC MSE MAE SRC

SVR Feature 1.9009 0.8941 0.5241 6.2996 2.0208 0.2163 7.0534 1.9695 0.4035
HyFea Feature 1.9013 1.0181 0.4497 4.7429 1.7080 0.4677 47132 1.6924 0.4708
MFTM Feature 1.8970 0.9772 0.4156 4.0222 1.5481 0.5849 4.3073 1.6132 0.5321
CLSTM Deep 1.8724 0.9823 0.4654 3.9143 1.5005 0.5888 4.2431 1.5882 0.5396
HMMVED Deep 1.8556 0.9497 0.4524 3.7154 1.3636 0.6352 4.2461 1.6017 0.5385
DLBA Deep 2.2290 1.0097 0.3614 4.8693 1.7021 0.4387 5.1425 1.7527 0.4007
MASSL Deep 1.9446 0.9278 0.4499 5.5670 1.8427 0.5271 7.8583 22274 0.5188
BLIP Deep 2.0646 0.9961 0.3603 4.3884 1.6340 0.5269 5.2436 1.8058 0.3762
CBAN Deep 1.8098 0.9309 0.4727 4.0443 1.5123 0.5754 4.2808 1.5894 0.5426
NIPA Retrieval 1.9999 0.9980 0.3989 4.2538 1.6532 0.4086 4.0209 1.5565 0.5696
MMRA Retrieval ~ 1.7600 0.8684 0.5439 3.5119 1.3730 0.6423 3.9456 1.5070 0.5806
SKAPP Retrieval ~ 0.9662 0.6367 0.6965 1.8196 0.8249 0.8414 2.0936 1.0369 0.8272
(improv.) 39.61%1T 26.68%1 28.06%T 48.19%1 39.51%1 31.00%T 46.94%1 29.06%1 42.47%"

Table 2: Social media popularity prediction performance comparison between our proposed SKAPP model and eleven baselines
on three large-scale real-world datasets. The best results are marked in bold and the second best are underlined.

retrieval-based models, NIPA underperforms on the ICIP
and SMPD datasets. This may be because it mainly consid-
ers the visual semantic similarity in retrieval, neglecting tex-
tual and metadata information; In contrast, MMRA, which
employs both UGC photos and texts in retrieval, achieves
the best performance compared to baselines; (iv) Our pro-
posed SKAPP model, powered with a meta retriever for re-
trieving more diverse and relevant UGCs, a selective refiner
for distilling retrieved UGCs based on the RRCP measure,
and a VL-GNN prediction network for aggregating contex-
tual UGC knowledge, remarkably outperforms all baselines.
It achieves relative improvements in MSE of up to 39.61%,
48.19%, and 46.94% on the ICIP, SMPD, and Instagram
datasets, respectively, compared to the second best results.

Experimental Analysis

The results of ablation studies for SKAPP’s modules, UGC
modalities, and retrieving strategies are presented in Table 3.

Ablation Study To investigate the contributions of M’s
key modules, we create five variant models by removing one
module at a time. The ablation results reveal the following:
(i) without the retrieval module, our model’s performance is
in line with the baselines, highlighting the critical role of re-
trieval in improving SMPP performance; (ii) when only se-
mantic retrieval is used (i.e., without the meta retriever), the
model’s performance significantly declines. This is likely
because semantic retrieval can introduce a large number of
similar but irrelevant UGCs; (iii) the selective refiner is es-
sential for effective retrieval, as it selects UGCs that posi-
tively contribute to the prediction; (iv) the VL-GNN mod-
ule enhances performance by aggregating multimodal and
contextual UGC knowledge through graph learning; (v) the
RRCP-Attention prediction network further boosts perfor-
mance by applying two levels of weighted fusion to the
learned UGC representations; (vi) overall, the integration
of all modules yields the lowest prediction error across the
three datasets, demonstrating the effectiveness of our pro-
posed modules in SKAPP.
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Variant ICIP SMPD Instagram
Ablation of SKAPP’s Modules

w/o Retrieval 1.5614 4.0443 3.2734
w/o Meta Retriever 1.9006 4.1353 5.2537
w/o Selective Refiner 1.1004 2.0854 2.6332
w/o VL-GNN 1.1223  2.1056 2.7178
w/o RRCP-Attention 1.0761  1.9606 2.1636
Ablation of UGC modalities

w/o Visual 1.1770  2.3567 2.4851
w/o Textual 1.1829 2.7037 2.3582
w/o Metadata 1.8188  4.0359 5.2537
Ablation of Retrieving Strategies

retrieval based on Photo 1.9006 4.1353 5.7644
retrieval based on Texts 1.9653  3.9958 4.7259
retrieval based on Metadata  1.6280  2.6945 3.8679
retrieval based on FLICO 1.8255 3.8562 5.4786
retrieval based on NIPA 1.9321 4.1687 5.2468
retrieval based on MMRA 1.9627  4.0507 4.6693
SKAPP (Full) 0.9662 1.8196 2.0936

Table 3: Ablation studies on SKAPP’s modules, UGC
modalities, and retrieving strategies across three datasets.
The evaluation metric is MSE.

UGC Modality We further ablate the effects of three UGC
modalities by excluding one modality — visual, textual, or
metadata — from SKAPP’s input. The results indicate that
metadata is the most important modality, supporting our
design of incorporating metadata into the retrieval query
construction. Both visual and textual modalities contribute
non-trivially to the prediction, with the visual modality be-
ing more influential on the SMPD dataset, and the textual
modality playing a more vital role on the Instagram dataset.

Retrieval Strategy To evaluate the effectiveness of the
proposed meta retriever and selective refiner, we compare
SKAPP with several retrieval strategies: retrieval based on
photos, texts, metadata, and three strategies employed in
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FLICO (Wang et al. 2023), NIPA (Ji et al. 2023a), and
MMRA (Zhong et al. 2024). We can see that the semantic
retrieval strategies — whether based on photo, texts, NIPA
(photo), or MMRA (photo and texts) — are less effective
than metadata-based retrieval strategies. FLICO’s approach,
which uses a separate classification model to estimate the
predictive contributions of UGCs, is ineffective for complex
social UGCs. These findings validate the efficacy of our pro-
posed meta retriever and selective refiner.

Parameter Sensitivity We perform a sensitivity analysis
on two key hyperparameters of SKAPP: the number of re-
trieved UGCs K and the contribution threshold 6 of RRCP.
As shown in Figure 4, the optimal performance is generally
achieved with K ~ 500 and 6 ~ 0.

Complexity Analysis The computational complexity of
SKAPP primarily arises from the retrieval process and the
prediction network. The embedding extraction and image-
to-text transformation of the UGCs in D are performed in
advance, incurring no real-time costs during UGC predic-
tion. The complexity of BM25 is O(|Q|*|D|+|D| xlog |D|).
The complexity of the VL-GNN is mainly determined by the
number of nodes |V| = K = 500 in G, which is fixed. We
compared SKAPP’s training time with that of the baselines,
as shown in Figure 5. NIPA is the most computational in-
tensive model, followed by SKAPP. Although SKAPP is not
as lightweight as models like CLSTM or CBAN, its sub-
stantial performance gains justify the additional computa-
tional overhead. In practice, for a dataset of approximately
300K UGCs, the prediction and retrieval costs of SKAPP are
about 50 seconds and 7 hours, respectively, when running
on a system with a 5.40GHz CPU, an NVIDIA 3090Ti GPU
with 24GB memory, and 24GB DDR4 RAM at 3200MHz.
A comparison of the retrieval and prediction times for the
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Model ICIP SMPD Instagram
Retr. Pred. Retr. Pred. Retr. Pred.
NIPA 49m 53.6s 9.0h 183m 10.5h 14.5m
MMRA 09m  4.5s 1.8h 3.9s 2.1h 3.7s
SKAPP 95m 412s 7.0h 50.1s 7.3h 45.0s

Table 4: Time Comparison for Retrieval and Training
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Figure 6: Robustness Under Data Sparsity and Pollution

three retrieval-based models is shown in Table 4. MMRA’s
retrieval process is more efficient due to its smaller number
of query features compared to NIPA and SKAPP. It is also
worth noting that the retrieval process can be further accel-
erated through multi-threaded processing.

Robustness To evaluate the robustness of SKAPP, we con-
duct experiments under two conditions: (i) with reduced
training data; and (ii) with polluted UGCs and retrieval re-
sults. For UGC pollution, we introduce Gaussian noise to
the visual and textual UGC embeddings. For retrieval pol-
lution, we randomly replace retrieved UGCs with irrelevant
ones from the database. We define three levels of pollution
— light, moderate, and severe, corresponding to 0.1, 0.3, and
0.5, respectively, in the variances of the Gaussian noise and
in the replacement ratios. We compare SKAPP with two top-
performing baselines, HMMVED and MMRA, on the ICIP
dataset. The results, presented in Figure 6, show that all three
models experience performance degradation with reduced
trained data or polluted data. The impact of training data
size on performance is more pronounced than that of data
quality. Despite these challenges, SKAPP consistently out-
performs the baselines by large margins, demonstrating its
robustness in scenarios of data sparsity and data pollution.

5 Conclusion

In this work, we studied the multimodal SMPP task and pro-
posed SKAPP, a retrieval-based knowledge augmentation
framework. Our approach includes the design of a meta re-
triever that queries a diverse set of potentially relevant UGCs
and a selective refiner that retains UGCs with positive gains
in prediction. Moreover, we employed a VL-GNN and an
RRCP-Attention-based prediction network to aggregate the
retrieved knowledge. Experiments on three datasets demon-
strated the effectiveness and robustness of SKAPP in en-
hancing SMPP performance. Future work can explore ways
to improve the retrieval efficiency, construct better queries,
and design new selection strategies.



Acknowledgments

This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant Nos. U22A2097,
62072077, and 62186043.

References

Abbar, S.; Castillo, C.; and Sanfilippo, A. 2018. To post
or not to post: Using online trends to predict popularity of
offline content. In ACM HT, 215-219.

Aggrawal, N.; Ahluwalia, A.; Khurana, P.; and Arora, A.
2017. Brand analysis framework for online marketing:
Ranking web pages and analyzing popularity of brands on
social media. Social Network Analysis and Mining, 7: 1-10.

Brunelli, L.; Viola, M.; and Susto, G. A. 2021. Instagram
Images and Videos Popularity Prediction: A Deep Learning-
Based Approach. In Italian Workshop on Artificial Intelli-
gence and Applications for Business and Industries.

Cao, Q.; Shen, H.; Gao, J.; Wei, B.; and Cheng, X. 2020.
Popularity prediction on social platforms with coupled graph
neural networks. In WSDM, 70-78.

Cappallo, S.; Mensink, T.; and Snoek, C. G. 2015. Latent
factors of visual popularity prediction. In /ICMR, 195-202.
Chen, X.; Chen, W.; Huang, C.; Zhang, Z.; Duan, L.;
and Zhang, Y. 2023. Double-Fine-Tuning Multi-Objective
Vision-and-Language Transformer for Social Media Popu-
larity Prediction. In ACM MM, 9462-9466.

Cheng, Z.; Walker, J.; Zhong, T.; and Zhou, F. 2022. Model-
ing multi-view interactions with contrastive graph learning
for collaborative filtering. In IJJCNN.

Cheng, Z.; Zhou, F.; Xu, X.; Zhang, K.; Trajcevski, G.;
Zhong, T.; and Philip, S. Y. 2024. Information Cascade
Popularity Prediction via Probabilistic Diffusion. TKDE,
36(12): 8541-8555.

Cheung, T.-h.; and Lam, K.-m. 2022. Crossmodal bipolar
attention for multimodal classification on social media. Neu-
rocomputing, 514: 1-12.

Cuconasu, F.; Trappolini, G.; Siciliano, F.; Filice, S.; Cam-
pagnano, C.; Maarek, Y.; Tonellotto, N.; and Silvestri, F.
2024. The power of noise: Redefining retrieval for RAG
systems. In SIGIR, 719-729.

Fernandes, P.; Yin, K.; Neubig, G.; and Martins, A. F. 2021.
Measuring and Increasing Context Usage in Context-Aware
Machine Translation. In ACL, 6467-6478.

Ferrara, E.; Interdonato, R.; and Tagarelli, A. 2014. On-
line popularity and topical interests through the lens of In-
stagram. In ACM HT, 24-34.

Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y;
Sun, J.; and Wang, H. 2023. Retrieval-augmented generation
for large language models: A survey. arXiv:2312.10997.
Ghosh, S.; Vinyals, O.; Strope, B.; Roy, S.; Dean, T.; and
Heck, L. 2016. Contextual LSTM (CLSTM) models for
large scale NLP tasks. arXiv:1602.06291.

Gu, J.; Xu, X.; Tian, Y.; Hu, Y.; Huang, J.; Zhong, W.; Zhou,
F.; and Gao, L. 2024. RRE: A Relevance Relation Extrac-
tion Framework for Cross-domain Recommender System at
Alipay. In ICME, 1-6.

939

Hong, L.; Dan, O.; and Davison, B. D. 2011. Predicting
popular messages in Twitter. In WWW, 57-58.

Hsu, C.-C.; Lee, C.-M.; Hou, X.-Y.; and Tsai, C.-H. 2023.
Gradient Boost Tree Network based on Extensive Feature

Analysis for Popularity Prediction of Social Posts. In ACM
MM, 9451-9455.

Ji, L.; Park, C. H.; Rao, Z.; and Chen, Q. 2023a. Neural Im-
age Popularity Assessment with Retrieval-augmented Trans-
former. In ACM MM, 2427-2436.

Ji, S.; Lu, X.; Liu, M.; Sun, L.; Liu, C.; Du, B.; and Xiong,
H. 2023b. Community-based dynamic graph learning for
popularity prediction. In ACM KDD, 930-940.

Kevin Wu, J. Z., Eric Wu. 2024. ClashEval: Quantifying
the tug-of-war between an LLM’s internal prior and external
evidence. arXiv:2404.10198v2.

Khosla, A.; Das Sarma, A.; and Hamid, R. 2014. What
makes an image popular? In WWW, 867-876.

Kim, S.; Jiang, J.-Y.; Nakada, M.; Han, J.; and Wang, W.
2020. Multimodal Post Attentive Profiling for Influencer
Marketing. In WWW, 2878-2884.

Lai, X.; Zhang, Y.; and Zhang, W. 2020. HyFea: Winning
solution to social media popularity prediction for multime-
dia grand challenge 2020. In ACM MM, 4565—4569.

Li, J.; Li, D.; Xiong, C.; and Hoi, S. 2022. BLIP: Boot-
strapping language-image pre-training for unified vision-
language understanding and generation. In ICML, 12888~
12900.

Li, X.; Lian, D.; Lu, Z.; Bai, J.; Chen, Z.; and Wang, X.
2024. GraphAdapter: Tuning vision-language models with
dual knowledge graph. In NeurlPS, 13448—-13466.

Lin, W.; Chen, J.; Mei, J.; Coca, A.; and Byrne, B. 2024.
Fine-grained late-interaction multi-modal retrieval for re-
trieval augmented visual question answering. In NeurlPS,
22820-22840.

Liu, A.-A.; Wang, X.; Xu, N.; Guo, J.; Jin, G.; Zhang, Q.;
Tang, Y.; and Zhang, S. 2022. A review of feature fusion-
based media popularity prediction methods. Visual Infor-
matics, 6(4): 78-89.

Long, X.; Zeng, J.; Meng, F.; Ma, Z.; Zhang, K.; Zhou, B.;
and Zhou, J. 2024. Generative multi-modal knowledge re-
trieval with large language models. In AAAI, 18733-18741.

Mishra, S.; Rizoiu, M.-A.; and Xie, L. 2016. Feature driven
and point process approaches for popularity prediction. In
CIKM, 1069-1078.

Momeni, E.; Cardie, C.; and Diakopoulos, N. 2015. A
survey on assessment and ranking methodologies for user-
generated content on the web. ACM Computing Surveys,
48(3): 1-49.

Moniz, N.; and Torgo, L. 2019. A review on web content

popularity prediction: Issues and open challenges. Online
Social Networks and Media, 12: 1-20.

Ortis, A.; Farinella, G. M.; and Battiato, S. 2019. Prediction
of social image popularity dynamics. In ICIAP, 572-582.
Robertson, S. E.; Walker, S.; Jones, S.; Hancock-Beaulieu,
M. M.; Gatford, M.; et al. 1995. Okapi at TREC-3. NIST
Special Publication, 109: 109.



Tatar, A.; De Amorim, M. D.; Fdida, S.; and Antoniadis, P.
2014. A survey on predicting the popularity of web content.
Journal of Internet Services and Applications, 5: 1-20.
Wang, Z.; Araki, J.; Jiang, Z.; Parvez, M. R.; and Neubig,
G. 2023. Learning to filter context for retrieval-augmented
generation. arXiv:2311.08377.

Wu, B.; Liu, P.; Cheng, W.-H.; Liu, B.; Zeng, Z.; Wang, J.;
Huang, Q.; and Luo, J. 2023. SMP Challenge: An Overview
and Analysis of Social Media Prediction Challenge. In ACM
MM, 9651-9655.

Xie, J.; Zhu, Y.; and Chen, Z. 2023. Micro-video popular-
ity prediction via multimodal variational information bottle-
neck. IEEE Transactions on Multimedia, 25: 24-37.

Xu, X.; Zhou, F.; Zhang, K.; Liu, S.; and Trajcevski, G.
2023. CasFlow: Exploring hierarchical structures and prop-
agation uncertainty for cascade prediction. TKDE, 35(4):
3484-3499.

Zhang, Y.; Feng, F.; He, X.; Wei, T.; Song, C.; Ling, G.; and
Zhang, Y. 2021. Causal intervention for leveraging popular-
ity bias in recommendation. In SIGIR, 11-20.

Zhang, Z.; Xu, S.; Guo, L.; and Lian, W. 2022. Multi-modal
Variational Auto-Encoder Model for Micro-video Popular-
ity Prediction. In ICCIP, 9-16.

Zhao, Q.; Erdogdu, M. A.; He, H. Y.; Rajaraman, A.; and
Leskovec, J. 2015. SEISMIC: A self-exciting point process
model for predicting tweet popularity. In ACM KDD, 1513—
1522.

Zhong, T.; Lang, J.; Zhang, Y.; Cheng, Z.; Zhang, K.; and
Zhou, F. 2024. Predicting Micro-video Popularity via Multi-
modal Retrieval Augmentation. In SIGIR, 2579-2583.

Zhou, F.; Xu, X.; Trajcevski, G.; and Zhang, K. 2021. A
survey of information cascade analysis: Models, predictions,
and recent advances. ACM Computing Surveys, 54(2): 1-36.

940



